spark

Transformation 和Action本质区别:

Transformations是RDD到RDD;

Actions是RDD到result。

Actions算子触发Spark job。

Spark groupbykey和cogroup使用示例

groupByKey
groupByKey([numTasks])是数据分组操作,在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。
val rdd0 = sc.parallelize(Array((1,1), (1,2) , (1,3) , (2,1) , (2,2) , (2,3)), 3)
val rdd1 = rdd0.groupByKey()
rdd1.collect

res0: Array[(Int, Iterable[Int])] = Array((1,ArrayBuffer(1, 2, 3)), (2,ArrayBuffer(1, 2, 3)))

cogroup
cogroup(otherDataset, [numTasks])是将输入数据集(K, V)和另外一个数据集(K, W)进行cogroup,得到一个格式为(K, Seq[V], Seq[W])的数据集。
val rdd2 = rdd0.cogroup(rdd0)
rdd2.collect
res1: Array[(Int, (Iterable[Int], Iterable[Int]))] = Array((1,(ArrayBuffer(1, 2, 3),ArrayBuffer(1, 2, 3))), (2,(ArrayBuffer(1, 2, 3),ArrayBuffer(1, 2, 3))))

Saprk aggregateByKey操作示例

aggregateByKey(zeroValue)(seqOpcombOp, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.

aggreateByKey(zeroValue: U)(seqOp: (U, T)=> U, combOp: (U, U) =>U) 和reduceByKey的不同在于,

reduceByKey输入输出都是(K, V),

aggreateByKey输出是(K,U),可以不同于输入(K, V) ,

aggreateByKey的三个参数:
zeroValue: U,初始值,比如空列表{} ;
seqOp: (U,T)=> U,seq操作符,描述如何将T合并入U,比如如何将item合并到列表 ;
combOp: (U,U) =>U,comb操作符,描述如果合并两个U,比如合并两个列表 ;
所以aggreateByKey可以看成更高抽象的,更灵活的reduce或group 。
val z = sc.parallelize(List(1,2,3,4,5,6), 2)
z.aggreate(0)(math.max(_, _), _ + _)
res0: Int = 9
val z = sc.parallelize(List((1, 3), (1, 2), (1, 4), (2, 3)))
z.aggregateByKey(0)(math.max(_, _), _ + _)
res1: Array[(Int, Int)] = Array((2,3), (1,9))

Spark combinebykey使用示例

combineByKey是对RDD中的数据集按照Key进行聚合操作。聚合操作的逻辑是通过自定义函数提供给combineByKey。

combineByKey[C](createCombiner: (V) ? C, mergeValue: (C, V) ? C, mergeCombiners: (C, C) ? C, numPartitions: Int):RDD[(K, C)]

把(K,V) 类型的RDD转换为(K,C)类型的RDD,C和V可以不一样。

combineByKey三个参数:

val data = Array((1, 1.0), (1, 2.0), (1, 3.0), (2, 4.0), (2, 5.0), (2, 6.0))
val rdd = sc.parallelize(data, 2)

val combine1 = rdd.combineByKey(

createCombiner = (v:Double) => (v:Double, 1),

mergeValue = (c:(Double, Int), v:Double) => (c._1 + v, c._2 + 1),
mergeCombiners = (c1:(Double, Int), c2:(Double, Int)) => (c1._1 + c2._1, c1._2 + c2._2),
numPartitions = 2 )
combine1.collect
res0: Array[(Int, (Double, Int))] = Array((2,(15.0,3)), (1,(6.0,3)))

textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

 Spark RDD Actions操作之reduce()

The arguments to reduce() are Scala function literals (closures)。

reduceRDD中元素两两传递给输入函数? 同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止。

scala的anonymous(匿名函数):

def num(x: Int, y: Int) => if(x > y) x else y

Scala的currying(柯里化):

def num(x: Int)(y: Int) => if(x > y) x else y

def num(x: Int) = (y: Int) => if(x > y) x else y 

Spark之中map与flatMap的区别

map()是将函数用于RDD中的每个元素,将返回值构成新的RDD。

flatmap()是将函数应用于RDD中的每个元素,将返回的迭代器的所有内容构成新的RDD,这样就得到了一个由各列表中的元素组成的RDD,而不是一个列表组成的RDD。

有些拗口,看看例子就明白了。

val rdd = sc.parallelize(List("coffee panda","happy panda","happiest panda party"))

输入

rdd.map(x=>x).collect

结果

res9: Array[String] = Array(coffee panda, happy panda, happiest panda party)

输入

rdd.flatMap(x=>x.split(" ")).collect

结果

res8: Array[String] = Array(coffee, panda, happy, panda, happiest, panda, party)

flatMap说明白就是先map然后再flat,再来看个例子

val rdd1 = sc.parallelize(List(1,2,3,3))
scala> rdd1.map(x=>x+1).collect
res10: Array[Int] = Array(2, 3, 4, 4)
scala> rdd1.flatMap(x=>x.to(3)).collect
res11: Array[Int] = Array(1, 2, 3, 2, 3, 3, 3)

---------------------------------------------------------------------------------------------------------------------------

点到为止版: flatMap = flatten + map;

深坑版: 就是自函子范畴上的一个协变函子的态射函数与自然变换的组合!

var li=List(1,2,3,4)

var res =li.flatMap(x=> x match {

case 3 => List(3.1,3.2)

case _ =>List(x*2)

})

println(res)

li= List(1,2,3,4)

var res2 =li.map(x=> x match {

case 3 =>List(3.1,3.2)

case _ =>x*2

})

println(res2)

//output=>

List(2,4, 3.1,3.2, 8)

List(2,4, List(3.1,3.2), 8)

Program exited.

这个过程就像是先 map, 然后再将 map 出来的这些列表首尾相接 (flatten).

Spark aggregate函数简解示例

aggregate函数将每个分区里面的元素进行聚合,然后用combine函数将每个分区的结果和初始值zeroValue进行combine操作。这个函数最终返回的类型不需要和RDD中的元素类型一致。

示例:

解释:

Spark RDD Actions操作之reduce()

textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

The arguments to reduce() are Scala function literals (closures)。

reduceRDD中元素两两传递给输入函数? 同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止。

scala的anonymous(匿名函数):

def num(x: Int, y: Int) => if(x > y) x else y

Scala的currying(柯里化):

def num(x: Int)(y: Int) => if(x > y) x else y

def num(x: Int) = (y: Int) => if(x > y) x else y 

 

提高RDD的使用效率。

Spark缓存策略示例:

0.NONE(不需要缓存)

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

1.DISK_ONLY

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

2.DISK_ONLY_2

副本2份

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

3.MEMORY_ONLY(默认的)

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

4.MEMORY_ONLY_2

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

5.MEMORY_ONLY_SER

SER做序列化。会消耗CPU。

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

6.MEMORY_ONLY_SER_2

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

7.MEMORY_AND_DISK

内存中若放不下,则多出的部分放在机器的本地磁盘上,区别于MEMORY_ONLY(内存中若放不下,则多出的部分原来在哪就还在哪)

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

8.MEMORY_AND_DISK_2

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

9.MEMORY_AND_DISK_SER

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

10.MEMORY_AND_DISK_SER_2

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

11.OFF_HEAP(不使用堆,比如可以使用Tachyon)

参数:_useDisk, _useMemory, _useOffHeap, _deserialized, _replication(默认值为1)

如何选择RDD的持久化策略?

1.Cache() MEMEORY_ONLY

2.MEMORY_ONLY_SER

3._2

4.能使用内存就不使用磁盘

时间: 2025-01-17 23:50:24

spark的相关文章

基于Spark MLlib平台的协同过滤算法---电影推荐系统

基于Spark MLlib平台的协同过滤算法---电影推荐系统 又好一阵子没有写文章了,阿弥陀佛...最近项目中要做理财推荐,所以,回过头来回顾一下协同过滤算法在推荐系统中的应用. 说到推荐系统,大家可能立马会想到协同过滤算法.本文基于Spark MLlib平台实现一个向用户推荐电影的简单应用.其中,主要包括三部分内容: 协同过滤算法概述 基于模型的协同过滤应用---电影推荐 实时推荐架构分析     一.协同过滤算法概述 本人对算法的研究,目前还不是很深入,这里简单的介绍下其工作原理. 通常,

Spark SQL 之 Join 实现

原文地址:Spark SQL 之 Join 实现 Spark SQL 之 Join 实现 涂小刚 2017-07-19 217标签: spark , 数据库 Join作为SQL中一个重要语法特性,几乎所有稍微复杂一点的数据分析场景都离不开Join,如今Spark SQL(Dataset/DataFrame)已经成为Spark应用程序开发的主流,作为开发者,我们有必要了解Join在Spark中是如何组织运行的. SparkSQL总体流程介绍 在阐述Join实现之前,我们首先简单介绍SparkSQL

spark性能调优之资源调优

转https://tech.meituan.com/spark-tuning-basic.html spark作业原理 使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程.根据你使用的部署模式(deploy-mode)不同,Driver进程可能在本地启动,也可能在集群中某个工作节点上启动.Driver进程本身会根据我们设置的参数,占有一定数量的内存和CPU core.而Driver进程要做的第一件事情,就是向集群管理器(可以是Spark Stand

Spark 整合hive 实现数据的读取输出

实验环境: linux centOS 6.7 vmware虚拟机 spark-1.5.1-bin-hadoop-2.1.0 apache-hive-1.2.1 eclipse 或IntelJIDea 本次使用eclipse. 代码: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import o

spark 教程三 spark Map filter flatMap union distinct intersection操作

RDD的创建 spark 所有的操作都围绕着弹性分布式数据集(RDD)进行,这是一个有容错机制的并可以被并行操作的元素集合,具有只读.分区.容错.高效.无需物化.可以缓存.RDD依赖等特征 RDD的创建基础RDD 1.并行集合(Parallelized Collections):接收一个已经存在的Scala集合,然后进行各种并行运算 var sc=new SparkContext(conf) var rdd=sc.parallelize(Array(2,4,9,3,5,7,8,1,6)); rd

Spark运行命令示例

local单机模式:结果xshell可见:./bin/spark-submit --class org.apache.spark.examples.SparkPi --master local[1] ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100 standalone集群模式:需要的配置项1, slaves文件2, spark-env.shexport JAVA_HOME=/usr/soft/jdk1.7.0_71export SPARK_MASTE

Spark Job具体的物理执行

即使采用pipeline的方式,函数f对依赖的RDD中的数据集合的操作也会有两种方式: 1.f(record),f作用于集合的每一条记录,每次只作用于一条记录 2.f(records),f一次性作用于集合的全部数据: Spark采用的是第一种方式,因为: 1.无需等待,可以最大化的使用集群的计算资源 2.减少OOM的产生 3.最大化的有利于并发 4.可以精准的控制每一个Partition本身(Dependency)及其内部的计算(compute) 5.基于lineage的算子流动式函数式计算,可

Dataflow编程模型和spark streaming结合

Dataflow编程模型和spark streaming结合 主要介绍一下Dataflow编程模型的基本思想,后面再简单比较一下Spark  streaming的编程模型 == 是什么 == 为用户提供以流式或批量模式处理海量数据的能力,该服务的编程接口模型(或者说计算框架)也就是下面要讨论的dataflow model 流式计算框架处理框架很多,也有大量的模型/框架号称能较好的处理流式和批量计算场景,比如Lambda模型,比如Spark等等,那么dataflow模型有什么特别的呢? 这就要要从

Spark性能优化指南——高级篇

Spark性能优化指南--高级篇 [TOC] 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜发生时的现象 绝大多数tas

【Spark深入学习 -14】Spark应用经验与程序调优

----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调优经验 3.1 Spark原理及调优工具 3.2 运行环境优化 3.2.1 防止不必要的分发 3.2.2 提高数据本地性 3.2.3 存储格式选择 3.2.4 选择高配机器 3.3 优化操作符 3.3.1 过滤操作导致多小任务 3.3.2 降低单条记录开销 3.3.3 处理数据倾斜或者任务倾斜 3.