转 Python爬虫入门七之正则表达式

静觅 » Python爬虫入门七之正则表达式

1.了解正则表达式

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。

正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。

正则表达式的大致匹配过程是:
1.依次拿出表达式和文本中的字符比较,
2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。
3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

2.正则表达式的语法规则

下面是Python中正则表达式的一些匹配规则,图片资料来自CSDN

3.正则表达式相关注解

(1)数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量词”ab*?”,将找到”a”。

注:我们一般使用非贪婪模式来提取。

(2)反斜杠问题

与大多数编程语言相同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反斜杠”\\\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\\”表示。同样,匹配一个数字的”\\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。

4.Python Re模块

Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下

 1 #返回pattern对象
 2 re.compile(string[,flag])
 3 #以下为匹配所用函数
 4 re.match(pattern, string[, flags])
 5 re.search(pattern, string[, flags])
 6 re.split(pattern, string[, maxsplit])
 7 re.findall(pattern, string[, flags])
 8 re.finditer(pattern, string[, flags])
 9 re.sub(pattern, repl, string[, count])
10 re.subn(pattern, repl, string[, count])

在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如

pattern = re.compile(r‘hello‘)

在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。

另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:

参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。

可选值有:

1  • re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
2  • re.M(全拼:MULTILINE): 多行模式,改变‘^‘和‘$‘的行为(参见上图)
3  • re.S(全拼:DOTALL): 点任意匹配模式,改变‘.‘的行为
4  • re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
5  • re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
6  • re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

在刚才所说的另外几个方法例如 re.match 里我们就需要用到这个pattern了,下面我们一一介绍。

注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。

(1)re.match(pattern, string[, flags])

这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对string向后匹配。下面我们通过一个例子理解一下

 1 __author__ = ‘CQC‘
 2 # -*- coding: utf-8 -*-
 3
 4 #导入re模块
 5 import re
 6
 7 # 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
 8 pattern = re.compile(r‘hello‘)
 9
10 # 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None
11 result1 = re.match(pattern,‘hello‘)
12 result2 = re.match(pattern,‘helloo CQC!‘)
13 result3 = re.match(pattern,‘helo CQC!‘)
14 result4 = re.match(pattern,‘hello CQC!‘)
15
16 #如果1匹配成功
17 if result1:
18     # 使用Match获得分组信息
19     print result1.group()
20 else:
21     print ‘1匹配失败!‘
22
23
24 #如果2匹配成功
25 if result2:
26     # 使用Match获得分组信息
27     print result2.group()
28 else:
29     print ‘2匹配失败!‘
30
31
32 #如果3匹配成功
33 if result3:
34     # 使用Match获得分组信息
35     print result3.group()
36 else:
37     print ‘3匹配失败!‘
38
39 #如果4匹配成功
40 if result4:
41     # 使用Match获得分组信息
42     print result4.group()
43 else:
44     print ‘4匹配失败!‘

运行结果

1 hello
2 hello
3 3匹配失败!
4 hello

匹配分析

1.第一个匹配,pattern正则表达式为’hello’,我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。

2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。

3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o’ 时无法完成匹配,匹配终止,返回None

4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。

我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:
1.string: 匹配时使用的文本。
2.re: 匹配时使用的Pattern对象。
3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:
1.group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
2.groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
3.groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
4.start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
5.end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
6.span([group]):
返回(start(group), end(group))。
7.expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g0。

下面我们用一个例子来体会一下

 1 # -*- coding: utf-8 -*-
 2 #一个简单的match实例
 3
 4 import re
 5 # 匹配如下内容:单词+空格+单词+任意字符
 6 m = re.match(r‘(\w+) (\w+)(?P<sign>.*)‘, ‘hello world!‘)
 7
 8 print "m.string:", m.string
 9 print "m.re:", m.re
10 print "m.pos:", m.pos
11 print "m.endpos:", m.endpos
12 print "m.lastindex:", m.lastindex
13 print "m.lastgroup:", m.lastgroup
14 print "m.group():", m.group()
15 print "m.group(1,2):", m.group(1, 2)
16 print "m.groups():", m.groups()
17 print "m.groupdict():", m.groupdict()
18 print "m.start(2):", m.start(2)
19 print "m.end(2):", m.end(2)
20 print "m.span(2):", m.span(2)
21 print r"m.expand(r‘\g \g\g‘):", m.expand(r‘\2 \1\3‘)
22
23 ### output ###
24 # m.string: hello world!
25 # m.re:
26 # m.pos: 0
27 # m.endpos: 12
28 # m.lastindex: 3
29 # m.lastgroup: sign
30 # m.group(1,2): (‘hello‘, ‘world‘)
31 # m.groups(): (‘hello‘, ‘world‘, ‘!‘)
32 # m.groupdict(): {‘sign‘: ‘!‘}
33 # m.start(2): 6
34 # m.end(2): 11
35 # m.span(2): (6, 11)
36 # m.expand(r‘\2 \1\3‘): world hello!

(2)re.search(pattern, string[, flags])

search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下

 1 #导入re模块
 2 import re
 3
 4 # 将正则表达式编译成Pattern对象
 5 pattern = re.compile(r‘world‘)
 6 # 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
 7 # 这个例子中使用match()无法成功匹配
 8 match = re.search(pattern,‘hello world!‘)
 9 if match:
10     # 使用Match获得分组信息
11     print match.group()
12 ### 输出 ###
13 # world

(3)re.split(pattern, string[, maxsplit])

按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。

1 import re
2
3 pattern = re.compile(r‘\d+‘)
4 print re.split(pattern,‘one1two2three3four4‘)
5
6 ### 输出 ###
7 # [‘one‘, ‘two‘, ‘three‘, ‘four‘, ‘‘]

(4)re.findall(pattern, string[, flags])

搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下

1 import re
2
3 pattern = re.compile(r‘\d+‘)
4 print re.findall(pattern,‘one1two2three3four4‘)
5
6 ### 输出 ###
7 # [‘1‘, ‘2‘, ‘3‘, ‘4‘]

(5)re.finditer(pattern, string[, flags])

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下

1 import re
2
3 pattern = re.compile(r‘\d+‘)
4 for m in re.finditer(pattern,‘one1two2three3four4‘):
5     print m.group(),
6
7 ### 输出 ###
8 # 1 2 3 4 

(6)re.sub(pattern, repl, string[, count])

使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。

 1 import re
 2
 3 pattern = re.compile(r‘(\w+) (\w+)‘)
 4 s = ‘i say, hello world!‘
 5
 6 print re.sub(pattern,r‘\2 \1‘, s)
 7
 8 def func(m):
 9     return m.group(1).title() + ‘ ‘ + m.group(2).title()
10
11 print re.sub(pattern,func, s)
12
13 ### output ###
14 # say i, world hello!
15 # I Say, Hello World!

(7)re.subn(pattern, repl, string[, count])

返回 (sub(repl, string[, count]), 替换次数)。

 1 import re
 2
 3 pattern = re.compile(r‘(\w+) (\w+)‘)
 4 s = ‘i say, hello world!‘
 5
 6 print re.subn(pattern,r‘\2 \1‘, s)
 7
 8 def func(m):
 9     return m.group(1).title() + ‘ ‘ + m.group(2).title()
10
11 print re.subn(pattern,func, s)
12
13 ### output ###
14 # (‘say i, world hello!‘, 2)
15 # (‘I Say, Hello World!‘, 2)

5.Python Re模块的另一种使用方式

在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。

函数API列表

1  match(string[, pos[, endpos]]) | re.match(pattern, string[, flags])
2  search(string[, pos[, endpos]]) | re.search(pattern, string[, flags])
3  split(string[, maxsplit]) | re.split(pattern, string[, maxsplit])
4  findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags])
5  finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags])
6  sub(repl, string[, count]) | re.sub(pattern, repl, string[, count])
7  subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])

具体的调用方法不必详说了,原理都类似,只是参数的变化不同。小伙伴们尝试一下吧~

时间: 2024-10-31 06:43:57

转 Python爬虫入门七之正则表达式的相关文章

Python爬虫入门七之正则表达式

在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑. 正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我

[转载]Python爬虫入门七之正则表达式

转自:http://cuiqingcai.com/977.html 在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑. 正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Pyt

Python爬虫入门之正则表达式

在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑. 正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我

Python爬虫实战七之计算大学本学期绩点

大家好,本次为大家带来的项目是计算大学本学期绩点.首先说明的是,博主来自山东大学,有属于个人的学生成绩管理系统,需要学号密码才可以登录,不过可能广大读者没有这个学号密码,不能实际进行操作,所以最主要的还是获取它的原理.最主要的是了解cookie的相关操作. 本篇目标 1.模拟登录学生成绩管理系统 2.抓取本学期成绩界面 3.计算打印本学期成绩 1.URL的获取 恩,博主来自山东大学~ 先贴一个URL,让大家知道我们学校学生信息系统的网站构架,主页是 http://jwxt.sdu.edu.cn:

Python爬虫入门 | 爬取豆瓣电影信息

这是一个适用于小白的Python爬虫免费教学课程,只有7节,让零基础的你初步了解爬虫,跟着课程内容能自己爬取资源.看着文章,打开电脑动手实践,平均45分钟就能学完一节,如果你愿意,今天内你就可以迈入爬虫的大门啦~好啦,正式开始我们的第二节课<爬取豆瓣电影信息>吧!啦啦哩啦啦,都看黑板~1. 爬虫原理1.1 爬虫基本原理听了那么多的爬虫,到底什么是爬虫?爬虫又是如何工作的呢?我们先从"爬虫原理"说起.爬虫又称为网页蜘蛛,是一种程序或脚本.但重点在于:它能够按照一定的规则,自动

Python爬虫入门六之Cookie的使用

大家好哈,上一节我们研究了一下爬虫的异常处理问题,那么接下来我们一起来看一下Cookie的使用. 为什么要使用Cookie呢? Cookie,指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密) 比如说有些网站需要登录后才能访问某个页面,在登录之前,你想抓取某个页面内容是不允许的.那么我们可以利用Urllib2库保存我们登录的Cookie,然后再抓取其他页面就达到目的了. 在此之前呢,我们必须先介绍一个opener的概念. 1.Opener 当你获取一个

(原)python爬虫入门(2)---排序爬取的辽宁科技大学热点新闻

发现科大网页的源码中还有文章的点击率,何不做一个文章点击率的降序排行.简单,前面入门(1)基本已经完成我们所要的功能了,本篇我们仅仅需要添加:一个通过正则获取文章点击率的数字:再加一个根据该数字的插入排序.ok,大功告成! 简单说一下本文插入排序的第一个循环,找到列表中最大的数,放到列表 0 的位置做观察哨. 上代码: # -*- coding: utf-8 -*- # 程序:爬取点击排名前十的科大热点新闻 # 版本:0.1 # 时间:2014.06.30 # 语言:python 2.7 #--

转 Python爬虫入门一之综述

转自: http://cuiqingcai.com/927.html 静觅 » Python爬虫入门一之综述 首先爬虫是什么? 网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本. 要学习Python爬虫,我们要学习的共有以下几点: Python基础知识 Python中urllib和urllib2库的用法 Python正则表达式 Python爬虫框架Scrapy Python爬虫更高级的功能 1.Pyth

1.Python爬虫入门一之综述

要学习Python爬虫,我们要学习的共有以下几点: Python基础知识 Python中urllib和urllib2库的用法 Python正则表达式 Python爬虫框架Scrapy Python爬虫更高级的功能 1.Python基础学习 首先,我们要用Python写爬虫,肯定要了解Python的基础吧,万丈高楼平地起,不能忘啦那地基,哈哈,那么我就分享一下自己曾经看过的一些Python教程,小伙伴们可以作为参考. 1) 慕课网Python教程 曾经有一些基础的语法是在慕课网上看的,上面附有一些