Linux--线程的同步与互斥

一、 mutex互斥量

同步:就是对资源的访问有序。互斥:就是任一时刻来说只有一个在执行;但是对于多线程的程序来说,访问冲突的问题是很普遍的,解决的办法是引入互斥锁(Mutex,MutualExclusive Lock),获得锁的线程可以完成“读-修改-写”的操作,然后释放锁给其它线程,没有获得锁的线程只能等待而不能访问共享数据,这样“读-修改-写”三步操作组成一个原子操作,要么都执行,要么都不执行,不会执行到中间被打断,也不会在其它处理器上并行做这个操作。

互斥锁用pthread_mutex_t类型的变量表示。用pthread_mutex_init初始化,用hread_destory()销毁。成功返回0,失败返回错误号。。如果Mutex变量是静态分配的(全局变量 或static变量),也可以用宏定义PTHREAD_MUTEX_INITIALIZER来初始化,相当于用pthread_mutex_init初始化并且attr参数为NULL

一个线程可以调用pthread_mutex_lock获得Mutex,如果这时另一个线程已经调pthread_mutex_lock获得了该Mutex,则当前线程需要挂起等待,直到另一个线程调用pthread_mutex_unlock释放Mutex,当前线程被唤醒,才能获得该Mutex并继续执行。意思就是说如果有一个线程对mutex上了锁,没有开锁,另外一个线程想获得mutex,就得挂机等待,直到上锁的线程开了锁释放开mutex之后,该线程被唤醒,才能获得mutex.

如果一个线程既想获得锁,又不想挂起等待,可以调用pthread_mutex_trylock,如果Mutex已经被另一个线程获得,这个函数会失败返回EBUSY,而不会使线程挂起等待。

  1 #include<stdio.h>
  2 #include<stdlib.h>
  3 #include<pthread.h>
  4 static int g_count=0;
  5 void * addWrite(void * arg)
  6 {
  7     int count=0;
  8     int value=0;
  9     while(count++ <5000)
 10     {
 11         value=g_count;
 12         printf("g_count is %d\n",g_count);
 13         g_count=value+1;
 14     }
 15 }
 16 int main()
 17 {
 18     pthread_t id1;
 19     pthread_t id2;
 20     int ret=pthread_create(&id1,NULL,addWrite,NULL);
 21     int res=pthread_create(&id2,NULL,addWrite,NULL);
 22     pthread_join(id1,NULL);
 23     pthread_join(id2,NULL);

我们创建两个线程,各自把g_count增加5000次,正常情况下最后counter应该等于10000,但事实上每次运行该程序的结果都不一样,有时候数到5000多,有时候数到6000多但是加上锁之后(在)第五行加上pthread_mutex_init 如下图

结果:

加上锁之后,就输出10000

二、lock和unlock的实现原理

为了实现互斥锁操作,大多数体系结构都提供了swap或exchange指令,该指令的作用是把寄存器和内存单元的数据相交换,由于只有一条指令,保证了原子性,即使是多处理器平台,访问内存的总线周期也有先后,一个处理器上的交换指令执行时另一个处理器的交换指令只能等待总线周期。如下图的伪代码所示。unlock中的释放锁操作同样只用一条指令实现,以保证它的原子性。

三、死锁

·一般情况下,如果同一个线程先后两次调用lock,在第二次调用时,由于锁已经被占用,该线程会挂起等待别的线程释放锁,然而锁正是被自己占用着的,该线程又被挂起而没有机会释放锁,因此 就永远处于挂起等待状态了,这叫做死锁(Deadlock)。另一种典型的死锁情形是这样:线程A获得了锁1,线程B获得了锁2,这时线程A调用lock试图获得锁2,结果是需要挂起等待线程B释放锁2,而这时线程B也调用lock试图获得锁1,结果是需要挂起等待线程A释放锁1,于是线程A和B都永远处于挂起状态了。

死锁形成的条件

①、互斥条件:一个资源每次只能被一个线程使用。

②、请求与保持条件:一个进程因请求资源而被阻塞时,对已获得的资源保持不放。

③、不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺。

④循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系

如果涉及到更多的线程和更多的锁,则更容易引起死锁问题。写程序时应该尽量避免同时获得多个锁,如果一定有必要这么做,则有一个原则:如果所有线程在需要多个锁时都按相同的先后顺序(常见的是按Mutex变量的地址顺序)获得锁,则不会出现死锁。比如一个程序中用到锁1、锁2、锁3,它们所对应的Mutex变量的地址是锁1<锁2<锁3,那么 所有线程在需要同时获得2个或3个锁时都应该按锁1、锁2、锁3的顺序获得。如果要为所有的锁确定一个先后顺序比较困难,则应该尽量使用pthread_mutex_trylock调用代替pthread_mutex_lock调用,以免死锁。

时间: 2024-10-06 00:49:41

Linux--线程的同步与互斥的相关文章

线程的同步与互斥,死锁

线程的同步与互斥 多个线程同时访问共享数据时可能会发生冲突,比如两个线程同时把一个全局变量加1,结果可能不是我们所期待的: 我们看这段代码的执行结果: #include <stdio.h> #include <stdlib.h> #include <pthread.h> static int g_count=0; void *thread(void *arg) { int index=0; int tmp=0; while(index++<5000) { tmp=

线程概念及线程的同步与互斥

线程概念:它是运行在进程内部的的一个基本执行流,多线程的控制流程可以长期并存,一个进程中的数据段和代码段都是被该进程中的多个线程共享的,若定义一个函数,每个线程都可以调用,若定义一个全局变量,每个线程都可以访问. 线程还共享进程的以下内容:1.文件描述符表 2.当前的工作目录 3.用户id(uid)和组id(gid) 4.每种信号的处理方式. 但每个线程还必须有自己的私有部分:1.线程id 2.硬件上下文(硬件寄存器的值,栈指针等) 3.自己的栈空间(运行时的临时数据都要保存在自己的栈空间上)

java的线程问题同步与互斥

以前学过java的线程,但是当时对Tread的理解不是很深,对于里面的同步与互斥,生产者与消费者问题,理解的不够深入,这次又从新学习java的多线程,感觉对线程的理解更加的深入了,觉得有必要写下博客记录下. 本文原创,转载请著明:http://blog.csdn.net/j903829182/article/details/38420503 1.java实现线程的方法: 1.实现Runnable接口,重写run方法,通过Thread的start方法启动线程.这种方法可以实现资源的共享 2.继承T

Linux环境下线程的同步与互斥以及死锁问题

由于本次要讨论操作系统的死锁问题,所以必须先研究的是linux环境下的线程同步与互斥 先看下面的代码 大家猜想输出应该是什么呢? 结果是下面这个样子 好吧,似乎并没有什么区别... 那么下面再看这段代码(请无视并忽略屏蔽的内容...) 大家猜想正确的结果是什么呢?5000,10000? 好吧,或许你们都错了. 在运行了一段时间后,它的结果是这样的. 是不是又对又错? 为什么呢? 这就是因为程序中printf语句作用:本身是库函数,所以必须进行系统调用,必须进入内核进行切换,有很大概率形成数据的混

Linux下线程的同步与互斥

一.线程的互斥 多个线程同时访问共享数据时可能会冲突,跟之前信号量的可重如性是同样的问题.如两个线程都要把某个全局变量增加1,这个操作在某平台需要三条指令完成: 1. 从内存读变量值到寄存器 2. 寄存器的值加1 3. 将寄存器的值写回内存 如下程序就会产生问题: 我们创建两个线程,每把g_count增加5000次,正常情况下最后g_count应该等于10000,但事实上每次运行该程序的结果都不一样. 对于多线程的程序,访问冲突的问题是很普遍的,解决的办法是引入互斥锁(Mutex,Mutual

Linux多线程编程——线程的同步与互斥

前言:无论是多线程编程还是多进程编程,控制好不同线程或不同进程之间同步和互斥问题是非常有必要的.同步是多个进程或线程共同完成某个任务,举例说,一个缓冲区的生产者和消费者问题,当生产者生产了一个商品时,等待的消费者就获得了一个消息知道可以去取走商品了,当消费者取走一个商品后,生产者就知道可以继续生产一个商品了,这是同步问题,所谓互斥问题,是指某个共享资源在一次操作中,只能被一个线程或进程占有,其他的线程或进程不能对它进行操作,比如对一个共享内存的读写操作,当一个进程对它写的时候,另一个进程就不能对

linux下的同步与互斥

谈到linux的并发,必然涉及到线程之间的同步和互斥,linux主要为我们提供了几种实现线程间同步互斥的 机制,本文主要介绍互斥锁,条件变量和信号量.互斥锁和条件变量包含在pthread线程库中,使用时需要包含 <pthread.h>头文件.而使用信号量时需要包含<semaphore.h>头文件. 1.互斥锁 类型声明:pthread_mutex_t mutex; 对互斥量的初始化: 程序在使用pthread_mutex_t之前需要先对其进行初始化,对于静态分配的pthread_m

Linux驱动之同步、互斥、阻塞的应用

同步.互斥.阻塞的概念: 同步:在并发程序设计中,各进程对公共变量的访问必须加以制约,这种制约称为同步. 互斥机制:访问共享资源的代码区叫做临界区,这里的共享资源可能被多个线程需要,但这些共享资源又不能被同时访问,因此临界区需要以某种互斥机制加以保护,以确保共享资源被互斥访问. 阻塞与非阻塞:阻塞调用是指调用结果返回之前,当前线程会被挂起,调用线程只有在得到结果之后才会返回.非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程,而是直接返回. 在按键驱动的例子中,如果有多个应用程序调用按键

线程的同步与互斥(死锁的产生和避免)

可以知道,一条语句对一个变量进行+1操作,转成汇编指令共有三条:将这个变量从内存中取出:将其值加1:再将加后的结果放回内存:当一个进程中的两个线程同时进行这个操作时,本来期望的是将变量进行两次加1,但中途有可能当一个线程刚从内存中将变量取出就被切换暂停了,此时线程会保存硬件上下文,第二个线程将变量加1之后前面切出去的线程回来继续执行,这时保存的还是变量原来的值,再将变量加1,会发现变量的最终结果并没有加2而是只加了1,因此这种操作并不是原子的. -------------------------

生产者与消费者模式(线程的同步与互斥)

死锁产生的四个条件: 1.互斥使用(资源独占) 一个资源每次只能给一个进程使用 .2.不可强占(不可剥夺) 资源申请者不能强行的从资源占有者手中夺取资源,资源只能由占有者自愿释放 .3.请求和保持(部分分配,占有申请) 一个进程在申请新的资源的同时保持对原有资源的占有(只有这样才是动态申请,动态分配) .4.循环等待 存在一个进程等待队列 {P1 , P2 , - , Pn}, 其中P1等待P2占有的资源,P2等待P3占有的资源,-,Pn等待P1占有的资源,形成一个进程等待环路 生产者:生产数据