【NLP】揭秘马尔可夫模型神秘面纱系列文章(三)

向前算法解决隐马尔可夫模型似然度问题

作者:白宁超

2016年7月11日22:54:57

摘要:最早接触马尔可夫模型的定义源于吴军先生《数学之美》一书,起初觉得深奥难懂且无什么用场。直到学习自然语言处理时,才真正使用到隐马尔可夫模型,并体会到此模型的妙用之处。马尔可夫模型在处理序列分类时具体强大的功能,诸如解决:词类标注、语音识别、句子切分、字素音位转换、局部句法剖析、语块分析、命名实体识别、信息抽取等。另外广泛应用于自然科学、工程技术、生物科技、公用事业、信道编码等多个领域。本文写作思路如下:第一篇对马尔可夫个人简介和马尔科夫链的介绍;第二篇介绍马尔可夫链(显马尔可夫模型)和隐马尔可夫模型以及隐马尔可夫模型的三大问题(似然度、编码、参数学习);第三至五篇逐一介绍三大问题相关算法:(向前算法、维特比算法、向前向后算法);最后非常得益于冯志伟先生自然语言处理教程一书,冯老研究自然语言几十余载,在此领域别有建树。本文原创,转载注明出处向前算法解决隐马尔可夫模型似然度问题  )

目录



【自然语言处理:马尔可夫模型(一)】:初识马尔可夫和马尔可夫链

【自然语言处理:马尔可夫模型(二)】:马尔可夫模型与隐马尔可夫模型

【自然语言处理:马尔可夫模型(三)】:向前算法解决隐马尔可夫模型似然度问题

马尔可夫个人简介



安德烈·马尔可夫,俄罗斯人,物理-数学博士,圣彼得堡科学院院士,彼得堡数学学派的代表人物,以数论和概率论方面的工作著称,他的主要著作有《概率演算》等。1878年,荣获金质奖章,1905年被授予功勋教授称号。马尔可夫是彼得堡数学学派的代表人物。以数论和概率论方面的工作著称。他的主要著作有《概率演算》等。在数论方面,他研究了连分数和二次不定式理论 ,解决了许多难题 。在概率论中,他发展了矩阵法,扩大了大数律和中心极限定理的应用范围。马尔可夫最重要的工作是在1906~1912年间,提出并研究了一种能用数学分析方法研究自然过程的一般图式——马尔可夫链。同时开创了对一种无后效性的随机过程——马尔可夫过程的研究。马尔可夫经多次观察试验发现,一个系统的状态转换过程中第n次转换获得的状态常取决于前一次(第(n-1)次)试验的结果。马尔可夫进行深入研究后指出:对于一个系统,由一个状态转至另一个状态的转换过程中,存在着转移概率,并且这种转移概率可以依据其紧接的前一种状态推算出来,与该系统的原始状态和此次转移前的马尔可夫过程无关。马尔可夫链理论与方法在现代已经被广泛应用于自然科学、工程技术和公用事业中。

1 向前算法原理描述



向前算法解决:问题1(似然度问题):给一个HMM λ=(A,B) 和一个观察序列O,确定观察序列的似然度问题 P=(O|λ) 。

对于马尔可夫链,表面观察和实际隐藏是相同的,只需要标记吃冰淇淋数目“3 1 3”的状态,把加权(弧上)的对应概率相乘即可。而隐马尔可夫模型就不是那么简单了,因为状态是隐藏的,我们并不知道隐藏的状态序列是什么?

简化下问题:假如我们知道天气热冷状况,并且知道小明吃冰淇淋的数量,我们去观察序列似然度。如:对于给定的隐藏状态序列“hot hot cold”我们来计算观察序列“3 1 3”的输出似然度。

如何进行计算?首先,隐马尔可夫模型中,每个隐藏状态只产生一个单独的观察即一一映射,隐藏状态序列与观察序列长度相同,即:给定这种一对一的映射以及马尔可夫假设,对于一个特定隐藏状态序列  以及一个观察序列  观察序列的似然度为:

故从隐藏状态“hot hot cold”到所吃冰淇淋观察序列“3 1 3”的向前概率为:

P(3 1 3|hot hot cold)=P(3|hot)*P(1|hot)*P(3|cold)=0.4*0.2*0.1=0.008

实际上,隐藏状态序列“hot hot cold”是我们的假设,并不知道隐藏状态序列,我们要考虑所有可能的天气序列,如此一来,我们将计算所有可能的联合概率,计算将会变得特别复杂。

我们来计算天气序列Q生产一个特定的冰淇淋事件序列O的联合概率:

如果隐藏序列只有一个是“hot hot cold”,那么我们的冰淇淋观察“3 1 3”和一个可能的隐藏状态“hot hot cold”的联合概率为:

P(313|hothotcold)=P(hot|start)*P(hot|hot)*P(hot|cold)*P(3|hot)*P(1|hot)*P(3|cold)=0.8*0.7*0.30.4*0.2*0.1=0.001344

P(3 1 3)= P(313| cold cold cold)+ P(313| cold cold hot) + P(313| hot hot cold ) + P(313| cold hot cold) + P(313|hot cold cold) + P(313| hot hot hot) + P(313| hot cold hot) + P(313| cold hot hot)

对于具有N个隐藏状态和T个观察序列,将会有  个可能隐藏序列,在实际中T往往很大,比如文本处理中可能有数万几十万个词汇,计算量将是指数上升。在隐含马尔可夫模型中有种向前的算法有效代替这种指数增长的复杂算法,大大降低了复杂度。实验证明向前算法的复杂度是  。

2 向前算法的实例解析



向前算法是一种动态规划算法,当得到观察序列的概率时候,它使用一个表来存储中间值。向前算法也使用对于生成观察序列的所有可能的隐藏状态的路径上的概率求和的方法计算观察概率。在向前算法中横向表示观察序列,纵向表示状态序列。

下图是对于给定的隐藏状态序列“hot hot cold”计算观察序列“3 13 ”的似然度的向前网格的例子。其中:

横向:时间上的观察序列,纵向:空间上的状态序列

方框:观察状态         圆框:隐藏状态

续框:不合法转移       实线上值:加权概率

每个单元 表示对于给定的自动机λ,在前面t个观察之后,在状态j的概率:  ,其中 表示第t个状态是状态j的概率。如: 表示状态1即数3时,q1的概率。

上面公式的3个因素:

向前网格如下:

在时间1和状态1的向前概率:

(从状态cold开始吃3根冰淇淋的似然度0.02)

在时间1和状态2的向前概率:

(从状态hot始吃3根冰淇淋的似然度0.32)

在时间2和状态1的向前概率:

(从开始到cold再到cold以及从开始到hot再到cold的天气状态,吃冰淇淋3 1 的观察似然度0.54)

在时间2和状态2的向前概率:

(从开始到cold再到hot以及从开始到hot再到hot的天气状态,吃冰淇淋3 1 的观察似然度0.0464)

用同样方法,我们可以计算时间步3和状态步1的向前概率以及时间步3和状态步2的概率等等,以此类推,直到结束。显而易见,使用向前算法来计算观察似然度可以表示局部观察似然度。这种局部观察似然度比使用联合概率表示的全局观察似然度更有用。

3 向前算法定义

向前算法的递归定义:

4  参考文献



【1】统计自然语言处理基础  Christopher.Manning等 著    宛春法等 译

【2】自然语言处理简明教程  冯志伟 著

【3】数学之美  吴军 著

【4】Viterbi算法分析文章  王亚强

声明:关于此文各个篇章,本人采取梳理扼要,顺畅通明的写作手法。一则参照相关资料二则根据自己理解进行梳理。避免冗杂不清,每篇文章读者可理清核心知识,再找相关文献系统阅读。另外,要学会举一反三,不要死盯着定义或者某个例子不放。诸如:此文章例子冰淇淋数量(观察值)与天气冷热(隐藏值)例子,读者不免问道此有何用?我们将冰淇淋数量换成中文文本或者语音(观察序列),将天气冷热换成英文文本或者语音文字(隐藏序列)。把这个问题解决了不就是解决了文本翻译、语音识别、自然语言理解等等。解决了自然语言的识别和理解,再应用到现在机器人或者其他设备中,不就达到实用和联系现实生活的目的了?本文原创,转载注明出处向前算法解决隐马尔可夫模型似然度问题

时间: 2024-10-10 10:21:26

【NLP】揭秘马尔可夫模型神秘面纱系列文章(三)的相关文章

【NLP】揭秘马尔可夫模型神秘面纱系列文章(五)

向前向后算法解决隐马尔可夫模型机器学习问题 作者:白宁超 2016年7月12日14:28:10 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处理时,才真正使用到隐马尔可夫模型,并体会到此模型的妙用之处.马尔可夫模型在处理序列分类时具体强大的功能,诸如解决:词类标注.语音识别.句子切分.字素音位转换.局部句法剖析.语块分析.命名实体识别.信息抽取等.另外广泛应用于自然科学.工程技术.生物科技.公用事业.信道编码等多个领域.本文写作思

隐马尔可夫模型HMM与维特比Veterbi算法(一)

隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔可夫模型(Hidden Markov Model) 一.一个简单的例子 考虑一个简单的例子,有人试图通过一片海藻推断天气--民间传说告诉我们'湿透的'海藻意味着潮湿阴雨,而'干燥的'海藻则意味着阳光灿烂.如果它处于一个中间状态('有湿气'),我们就无法确定天气如何.然而,天气的状态并没有受限于海藻的

隐马尔可夫模型(Hidden Markov Model,HMM)

介绍 崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本文会介绍声称概率模式的系统,用来预测天气的变化 然后,我们会分析这样一个系统,我们希望预测的状态是隐藏在表象之后的,并不是我们观察到的现象.比如,我们会根据观察到的植物海藻的表象来预测天气的状态变化. 最后,我们会利用已经建立的模型解决一些实际的问题,比如根据一些列海藻的观察记录,分析出这几天

NLP | 自然语言处理 - 标注问题与隐马尔科夫模型(Tagging Problems, and Hidden Markov Models)

什么是标注? 在自然语言处理中有一个常见的任务,即标注.常见的有:1)词性标注(Part-Of-Speech Tagging),将句子中的每个词标注词性,例如名词.动词等:2)实体标注(Name Entity Tagging),将句子中的特殊词标注,例如地址.日期.人物姓名等. 下图所示的是词性标注的案例,当输入一个句子时,计算机自动标注出每个词的词性. 下图所示的是实体标注的案例,当输入一个句子时,计算机自动标注出特殊词的实体类别. 粗略看来,这并不是一个简单问题.首先每个词都可能有多个含义,

NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)

本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样子,因为比较常用的例子比如掷骰子.天气变化什么的都觉得太toy.以后会修改. (一)贝叶斯网简单回顾 图模型(PGM)根据边是否有向,可以分为有向图模型和无向图模型. 待补充-- (二)隐马尔可夫模型 隐马尔可夫模型(Hidden Markov model,HMM)属于生成式模型,被广泛用于序列标注

《概率统计》14.状态解码:隐马尔科夫模型隐含状态揭秘

隐含状态解码问题的描述 上一篇我们讲完了概率估计问题,这里我们再来讲一下隐马尔科夫模型的状态解码问题. 解码 Decoding,就是给定一个已知的观测序列,求它最有可能对应的状态序列.那么用形式化的语言来说,就是已知模型λ = (A, B, π)和观测序列\(O = (o_{1},o_{2},...,o_{T})\),求使得条件概率P(I|O)最大的隐状态序列I = (\(i_{1},i_{2},...,i_{T}\)) 我们一步一步地来,先不考虑输出观测,仅仅只考虑隐状态的转移,来体会一下思路

马尔科夫链和隐马尔可夫模型(转载)

马尔可夫模型是由Andrei A. Markov于1913年提出的 ?? 设 SS是一个由有限个状态组成的集合 S={1,2,3,-,n?1,n}S={1,2,3,-,n?1,n} 随机序列 XX 在 tt时刻所处的状态为 qtqt,其中 qt∈Sqt∈S,若有: P(qt=j|qt?1=i,qt?2=k,?)=P(qt=j|qt?1=i)P(qt=j|qt?1=i,qt?2=k,?)=P(qt=j|qt?1=i) aij≥0∑jnaij=1aij≥0∑jnaij=1 则随机序列 XX构成一个一

隐马尔科夫模型HMM

隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用. 引言: 隐马尔科夫模型是马尔科夫链的一种,它

马尔可夫模型自动生成文章

马尔可夫链是一个随机过程,在这个过程中,我们假设前一个或前几个状态对预测下一个状态起决定性作用.和抛硬币不同,这些事件之间不是相互独立的.通过一个例子更容易理解. 想象一下天气只能是下雨天或者晴天.也就是说,状态空间是雨天或者晴天.我们可以将马尔可夫模型表示为一个转移矩阵,矩阵的每一行代表一个状态,每一列代表该状态转移到另外一个状态的概率. 然而,通过这个状态转移示意图更容易理解. 换句话说,假如今天是晴天,那么有90%的概率明天也是晴天,有10%的概率明天是下雨天. 文章生成器 马尔可夫模型有