Python - Seaborn可视化:图形个性化设置的几个小技巧

1 概述

在可视化过程中,经常会对默认的制图效果不满意,希望能个性化进行各种设置。

本文通过一个简单的示例,来介绍seaborn可视化过程中的个性化设置。包括常用的设置,如:

  1. 设置图表显示颜色
  2. 设置图表标题,包括显示位置,字体大小,颜色等
  3. 设置x轴和y轴标题,包括颜色,字体大小
  4. 设置x轴和y轴刻度内容,包括颜色、字体大小、字体方向等
  5. 将x轴和y轴内容逆序显示
  6. 设置x轴或y轴显示位置

本文的运行环境:

  1. windows 7
  2. python 3.5
  3. jupyter notebook
  4. seaborn 0.7.1
  5. matplotlib 2.0.2

2 未个性化设置的情形

本文的数据来自UCI的数据集”sonar”,用pandas直接读取数据。如下:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
% matplotlib inline

target_url = ‘http://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/sonar.all-data‘
df = pd.read_csv(target_url, header=None, prefix=‘V‘)
corr = df.corr()

首先来看看没有进行个性化设置时的显示情况,如下:

f, ax= plt.subplots(figsize = (14, 10))

sns.heatmap(corr,cmap=‘RdBu‘, linewidths = 0.05, ax = ax)

# 设置Axes的标题
ax.set_title(‘Correlation between features‘)

f.savefig(‘sns_style_origin.jpg‘, dpi=100, bbox_inches=‘tight‘)

图片显示效果如下:

seaborn制图的默认效果其实还是不错的。

3 进行个性化设置

对于上面这张图,可能让y轴从下到上,从v0开始显示,这样显示出来的对角线可能更符合我们的视觉显示效果。

这就要用到 将y轴内容进行可逆显示,涉及的代码如下:

# 将y轴或x轴进行逆序
ax.invert_yaxis()
# ax.invert_xaxis()

其他的个性化设置的代码,包括:

将x轴刻度放置在top位置的几种方法

# 将x轴刻度放置在top位置的几种方法
# ax.xaxis.set_ticks_position(‘top‘)
ax.xaxis.tick_top()
# ax.tick_params(axis=‘x‘,labelsize=6, colors=‘b‘, labeltop=True, labelbottom=False) # x轴

设置坐标轴刻度参数,”axis”不写的时候,默认是x轴和y轴的参数同时调整。

# 设置坐标轴刻度的字体大小
# matplotlib.axes.Axes.tick_params
ax.tick_params(axis=‘y‘,labelsize=8) # y轴

旋转轴刻度上文字方向的两种方法

# 旋转轴刻度上文字方向的两种方法
ax.set_xticklabels(ax.get_xticklabels(), rotation=-90)
# ax.set_xticklabels(corr.index, rotation=90)

保存图片,设置bbox_inches=’tight’,保存的图片则不会出现部分内容显示不全的现象。

f.savefig(‘sns_style_update.jpg‘, dpi=100, bbox_inches=‘tight‘)

整合好的代码如下,大家可以运行试试效果。

f, ax = plt.subplots(figsize = (14, 10))

# 设置颜色
cmap = sns.cubehelix_palette(start = 1, rot = 3, gamma=0.8, as_cmap = True)

# color: https://matplotlib.org/users/colormaps.html
sns.heatmap(corr,cmap=‘RdBu‘, linewidths = 0.05, ax = ax)

# 设置Axes的标题
ax.set_title(‘Correlation between features‘, fontsize=18, position=(0.5,1.05))

# 将y轴或x轴进行逆序
ax.invert_yaxis()
# ax.invert_xaxis()

ax.set_xlabel(‘X Label‘,fontsize=10)

# 设置Y轴标签的字体大小和字体颜色
ax.set_ylabel(‘Y Label‘,fontsize=15, color=‘r‘)

# 设置坐标轴刻度的字体大小
# matplotlib.axes.Axes.tick_params
ax.tick_params(axis=‘y‘,labelsize=8) # y轴
# ax.tick_params(axis=‘x‘,labelsize=6, colors=‘b‘, labeltop=True, labelbottom=False) # x轴

# 将x轴刻度放置在top位置的几种方法
# ax.xaxis.set_ticks_position(‘top‘)
ax.xaxis.tick_top()
# ax.tick_params(axis=‘x‘,labelsize=6, colors=‘b‘, labeltop=True, labelbottom=False) # x轴

# 修改tick的字体颜色
# ax.tick_params(axis=‘x‘, colors=‘b‘) # x轴

# 旋转轴刻度上文字方向的两种方法
ax.set_xticklabels(ax.get_xticklabels(), rotation=-90)
# ax.set_xticklabels(corr.index, rotation=90)

# 单独设置y轴或x轴刻度的字体大小, 调整字体方向
# ax.set_yticklabels(ax.get_yticklabels(),fontsize=6)
# ax.set_xticklabels(ax.get_xticklabels(), rotation=-90)

f.savefig(‘sns_style_update.jpg‘, dpi=100, bbox_inches=‘tight‘)

图形显示效果如下:

这些个性化的设置,其实大部分都是使用的matplotlib的内容,seaborn是基于matplotlib衍生的,所以可以跟matplotlib进行融合使用。

当然,并不是每次都需要进行个性定制,具体可以根据自己的需求来设置。

如果您喜欢我的文章,欢迎关注微信公众号“Python数据之道”(ID:PyDataRoad

?

时间: 2024-10-25 04:36:46

Python - Seaborn可视化:图形个性化设置的几个小技巧的相关文章

Python开发工具PyCharm个性化设置(图解)

Python开发工具PyCharm个性化设置,包括设置默认PyCharm解析器.设置缩进符为制表符.设置IDE皮肤主题等,大家参考使用吧. JetBrains PyCharm Pro 4.5.3 中文汉化专业版 授权:特别软件 类型:国外软件 语言:简体中文 大小:197.79 MB 日期:2015-07-10 环境:WinXP, Win2008, Win7, Win8 下载 1.设置默认PyCharm解析器: 操作如下: Python–>Preferences–>Project Interp

不为人知的python request小技巧

关于 Python requests ,在使用中,总结了一些小技巧把,记录下. 1:保持请求之间的Cookies,我们可以这样做. 2:请求时,会加上headers,一般我们会写成这样 唯一不便的是之后的代码每次都需要这么写,代码显得臃肿,所以我们可以这样: 3:默认requests请求失败后不会重试,但是我们跑case时难免遇到一些网络或外部原因导致case失败,我们可以在Session实例上附加HTTPAdapaters 参数,增加失败重试次数. 这样,之后的请求,若失败,重试3次. 4:重

Python Requests 小技巧总结

关于 Python Requests ,在使用中,总结了一些小技巧把,分享下. 1:保持请求之间的Cookies,我们可以这样做. import requests self.session = requests.Session() self.session.get(login_url) # 可以保持登录态 2:请求时,会加上headers,一般我们会写成这样 self.session.get(url, params, headers=headers) 唯一不便的是之后的代码每次都需要这么写,代码

【数据科学】Python数据可视化概述

注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Python中,使用的最多的数据可视化工具是matplotlib,除此之外还有很多其他可选的可视化工具包,主要包括以下几大类: matpl

Python数据可视化的四种简易方法

摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据,并且创建可视化确实有助于让问题更清晰和更容易理解,尤其是对于那些较大的高维度数据集.在项目结束的时候,能够以清晰的.简洁的和令人信服的方式呈现最终结果,这是非常重要的,让你的用户能够理解和明白. 你可能已经看过了我之前的文章<5种快速和简单的Python数据可视化方法(含代码)>(5 Quick

Python数据可视化的10种技能

今天我来给你讲讲Python的可视化技术. 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解.其中最直观的就是采用数据可视化技术,这样,数据不仅一目了然,而且更容易被解读.同样在数据分析得到结果之后,我们还需要用到可视化技术,把最终的结果呈现出来. 可视化视图都有哪些? 按照数据之间的关系,我们可以把可视化视图划分为4类,它们分别是比较.联系.构成和分布.我来简单介绍下这四种关系的特点: 比较:比较数据间各类别的关系,或者是它们随着时间

python数据可视化(matplotlib)

数据可视化 基本概念 数据可视化是指借助于图形化的手段,清晰.快捷有效的传达与沟通信息.同时,也可以辅助用户做出相应的判断,更好的去洞悉数据背后的价值. 字不如表,表不如图. 观察号码的频率,每个号码出现了多少次? 文字 08 10 15 20 30 31 33 0601 09 10 17 21 28 32 1302 05 08 13 19 21 28 1003 05 07 14 18 23 25 07…… …… 表格 图形 通过可视化图表方式,就可以清晰的表达信息 可视化图形辅助决策 1854

python -- 数据可视化(二)

python -- 数据可视化 Matplotlib 绘图 1.图形对象(图形窗口) mp.figure(窗口名称, figsize=窗口大小, dpi=分辨率, facecolor=颜色) 如果"窗口名称"是第一次出现,那么就创建一个新窗口,其标题栏显示该名称,如果"窗口名称"已经出现过,那么不再创建新窗口,而只是将与该名称相对应的窗口设置为当前窗口.所谓当前窗口,就是接受后续绘图操作的窗口. mp.title(标题文本, fontsize=字体大小) mp.xl

Python 数据可视化工具以及数据分析开发架构

Python 数据可视化进阶 Python数据可视化教程:基于 plotly 动态可视化绘图 ?https://edu.51cto.com/sd/4bff8 ? Python数据可视化教程 Seaborn ?https://edu.51cto.com/sd/19627 Python 数据分析实战 视频课程https://edu.51cto.com/sd/63225 Python数据可视化: pyecharts实战 ????? pyecharts 是一个用于生成 Echarts 图表的类库.Ech