hd 1207(四汉诺塔)

三个汉诺塔算法

   f(n)=2^n-1

两个思路大同小异

Frame算法

  在1941年,一位名叫J. S. Frame的人在《美国数学月刊》上提出了一种解决四柱汉诺塔问题的算法,这是人们熟知的Frame算法:

  (1)用4柱汉诺塔算法把A柱上部分的n- r个碟子通过C柱和D柱移到B柱上【F(
  n- r )步】。

  (2)用3柱汉诺塔经典算法把A柱上剩余的r个碟子通过C柱移到D柱上【2^r-1步】。

  (3)用4柱汉诺塔算法把B柱上的n-r个碟子通过A柱和C柱移到D柱上【F(n-r)步】。

  (4)依据上边规则求出所有r(1≤r≤n)情况下步数f(n),取最小值得最终解。

  因此Frame算法的递归方程如下:

  F(n)=min(2*F(n-r)+2^r-1),(1≤r≤n)。

变体汉诺塔

问题描述:在经典汉诺塔的基础上加一个条件,即,如果再加一根柱子(即现在有四根柱子a,b,c,d),计算将n个盘从第一根柱子(a)全部移到最后一根柱子(d)上所需的最少步数,当然,也不能够出现大的盘子放在小的盘子上面。注:1<=n<=64;

分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步:

(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x];

(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱上的盘小)

些时移动方式相当于是一个经典汉诺塔,即这个过程需要的步数为2^(n-x)-1(证明见再议汉诺塔一);

(3)将c柱上的x个盘依靠a,b柱移到d柱上,这个过程需要的步数为F[x];

第(3)步结束后任务完成。

故完成任务所需要的总的步数F[n]=F[x]+2^(n-x)-1+F[x]=2*F[x]+2^(n-x)-1;但这还没有达到要求,题目中要求的是求最少的步数,易知上式,随着x的不同取值,对于同一个n,也会得出不同的F[n]。即实际该问题的答案应该min{2*F[x]+2^(n-x)-1},其中1<=x<=n;在用高级语言实现该算法的过程中,我们可以用循环的方式,遍历x的各个取值,并用一个标记变量min记录x的各个取值中F[n]的最小值。

时间: 2024-10-14 05:53:11

hd 1207(四汉诺塔)的相关文章

hdu 1207 汉诺塔II (DP+递推)

汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4529    Accepted Submission(s): 2231 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往

nyoj 1078 汉诺塔(四)[二分图 || 规律 || 暴力 || 贪心]

题目:nyoj 1078 汉诺塔(四) 分析:做这个题目的时候是在图论的题目里面看到的,到时读了题目推了一下,发现好像有点规律,试了一下果然过了. 后来看了一下数据,才50,那么试了一下模拟,也过了. 好像zoj有一道题目卡模拟,模拟的时候必须贪心一下才能过 这道题出题人的意图在于考大家的:二分图最小路径覆盖. 把每一个球看做一个点,然后如果两个和为平方数的话就给这两个点之间连接一条边,然后用一个特殊的匹配算法,类似于匈牙利算法,但是每次找匹配的时候加入一条边上连接的有匹配的话就不能匹配,最后求

Hdu 1207 汉诺塔II

汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8433    Accepted Submission(s): 4162 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往

HDU ACM 1207 汉诺塔II

解析: 1.先看汉诺塔1的情况 a.只有一个盘子时,只需挪动一步: b.假如n个盘子要移动An步,则有n+1个盘子可以先通过An步把上面的n个盘子挪到第二个柱子上,再挪最大的盘子,最后把n个盘子挪到大的上面,总共2An+1步,则有A(n+1)=2An+1. c.以上式子可推得An=2^n-1. 2.回过来看该題,该题多加了一根柱子,现在有四根柱子了,分别是a,b,c,d,计算将n个盘从第一根柱子a全部移到最后一根柱子d上所需的最少步数,而且不能够出现大的盘子放在小的盘子上面. a.设F[n]为所

汉诺塔(四)(暴力)

汉诺塔(四) 时间限制:3000 ms  |  内存限制:65535 KB 难度:2 描述 汉诺塔问题是一个经典的问题,现在我们有 n 个柱子和 m 个编号(1-m)的球,我们现在要求把尽量多的球放在尽量少的柱子上,如果相邻两个球的和不是完全平方数的话球会相互排斥而无法接触.(注意:球必须从小到大放,每次只能放在其他球的上面或者一个新的柱子上面) 输入 首先一个T,表示T组测试数据,然后一个n(1<=n<=50). 输出 输出一行,表示n个柱子能放的最大的球编号. 样例输入 1 4 样例输出

HDU 1207 汉诺塔II (递推)

经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘.有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭.也有人相信婆罗门至今仍在一刻不停地搬动着圆盘.恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在.Gardon

汉诺塔2(四个柱)

Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘.有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭.也有人相信婆罗门至今仍在一刻不停地搬动着圆盘.恩,当然这个传说并不可信,如今汉诺

汉诺塔的问题:4个柱子,如果塔的个数变位a,b,c,d四个,现要将n个圆盘从a全部移到d,移动规则不变

四柱汉诺塔问题的求解程序.解题思路:如a,b,c,d四柱. 要把a柱第n个盘移到目标柱子(d柱),先把上层 分两为两部份,上半部份移到b柱,下半部分移到c柱,再把第n盘移到 目标柱子,然后,c柱盘子再移到目标柱子,再把b柱盘子移到目标柱子. 细节地方: 上半部份移到b柱时,它的中间变量柱子是有二选一的.而下半部分 移到c柱时,它的中间变量柱子只有一个(因为一个柱子已被上半部份 占了).b,c也移到目标柱子时同理.

水题 第四站 HDU 汉诺塔VII

先来回忆一下汉诺塔 A,B,C,三个塔将A塔上的n块砖转移到C塔,首先将(n-1)块砖转移到B塔,将第n块砖转移到C塔,再将B塔上的(n-1)块砖转移到C塔,所以 函数为借助B塔,将A塔的砖转移到C塔, 首先是借助C塔,将A塔的砖转移到B塔, 然后是借助A塔,将B塔的砖转移到C塔. 附上网上的代码,有助于理解,出处 http://blog.csdn.net/kkkkkxiaofei/article/details/8333644/ 1 #include <iostream> 2 #includ