POJ 2955 Brackets

Brackets

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6622   Accepted: 3558

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

Stanford Local 2004

题目大意:给你一个长度不超过100的括号序列,求最长合法括号子序列的长度。合法的括号序列满足下列条件:

1.空的括号序列是合法的;

2.如果一个括号序列s是合法的,那么(s)和[s]都是合法的;

3.如果两个括号序列a和b都是合法的,那么ab也是合法的;

4.其他的括号序列都是不合法的。

例如:(), [], (()), ()[], ()[()]都是合法的,而(, ], )(, ([)], ([(]都是不合法的。

解题思路:一道典型的区间DP模型题目。分析一下问题,可以发现:如果找到一对匹配的括号,例如[xxx]oooo,就把区间分成两部分,一部分是xxx,另一部分是oooo。

设dp[i][j]表示区间[i,j]之间的最长合法括号子序列的长度,那么当i<j时,如果区间[i+1,j]内没有与i匹配的括号,则dp[i][j]=dp[i+1][j];如果存在一个与之匹配的k,那么dp[i][j]=max{dp[i+1][j], dp[i+1][k-1]+dp[k+1][j]+1(i<=k<=j&&i和k是一对匹配的括号)}。因此,我们将整个串长作为区间进行搜索,那么最后2*dp[0][len-1]即为答案,len表示串的长度。详见代码。

附上AC代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 using namespace std;
 4 const int maxn = 105;
 5 char str[maxn];
 6 int dp[maxn][maxn];
 7
 8 bool match(char a, char b){
 9     return (a==‘(‘&&b==‘)‘) || (a==‘[‘&&b==‘]‘);
10 }
11
12 int dfs(int l, int r){
13     if (l >= r)
14         return 0;
15     if (l+1 == r)
16         return dp[l][r] = match(str[l], str[r]);
17     if (dp[l][r])
18         return dp[l][r];
19     int ans = dfs(l+1, r);
20     for (int i=l; i<=r; ++i)
21         if (match(str[l], str[i])){
22             int t = dfs(l+1, i-1)+dfs(i+1, r)+1;
23             if (t > ans)
24                 ans = t;
25         }
26     return dp[l][r] = ans;
27 }
28
29 int main(){
30     while (~scanf("%s", str) && str[0]!=‘e‘){
31         memset(dp, 0, sizeof(dp));
32         int len = strlen(str);
33         dfs(0, len-1);
34         printf("%d\n", 2*dp[0][len-1]);
35     }
36     return 0;
37 }

时间: 2024-10-09 21:45:46

POJ 2955 Brackets的相关文章

POJ 2955 Brackets (动规)

Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2999   Accepted: 1536 Description We give the following inductive definition of a "regular brackets" sequence: the empty sequence is a regular brackets sequence, if s is a reg

POJ 2955 Brackets(计数问题吗呵呵)

我只能说这道题和上一道动态规划的问题真的是太像了,连方法也一模一样 确实,计数也需要存状态,计数也是需要动规的. 此时d[i][j]表示的状态是s[i~j]的序列中有多少 不规则 的括号. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n; char s[105]; int d[105][105]; bool match(char ch1,char ch2)

poj 2955 Brackets dp简单题

//poj 2955 //sep9 #include <iostream> using namespace std; char s[128]; int dp[128][128]; int n; int rec(int l,int r) { if(dp[l][r]!=-1) return dp[l][r]; if(l==r) return dp[l][r]=0; if(l+1==r){ if(s[l]=='('&&s[r]==')') return dp[l][r]=2; if(

POJ 2955 Brackets (区间dp 括号匹配)

Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3951   Accepted: 2078 Description We give the following inductive definition of a "regular brackets" sequence: the empty sequence is a regular brackets sequence, if s is a reg

poj 2955 Brackets【区间DP】

题目链接:http://poj.org/problem?id=2955 题意:求回文子串的最大长度. 解法:枚举区间长度,更新答案. 代码: #include <stdio.h> #include <ctime> #include <math.h> #include <limits.h> #include <complex> #include <string> #include <functional> #include

POJ 2955 Brackets (区间dp入门)

Description We give the following inductive definition of a "regular brackets" sequence: the empty sequence is a regular brackets sequence, if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and if a and b are

POJ 2955 Brackets (区间DP)

题意:给定一个序列,问你最多有多少个合法的括号. 析:区间DP,dp[i][j] 表示在 第 i 到 第 j 区间内最多有多少个合法的括号. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <ios

poj(2955)——Brackets(区间dp)

题意: 现在我们定义一种R串,它必须满足以下条件: 1)当它的字串是空的时候时,那么它是R串. 2)当它是R串时,那么(s)或是[s]也是R串. 3)当a和b都是R串时,那么ab也是R串. 这里我没有完全领悟题目的意思,所以我发现递推不过去.其实它的实质就是括号匹配. 也就是说这里的合法序列是指括号能够两两匹配的. if((a[s]=='('&&a[e]==')')||(a[s]=='['&&a[e]==']')) 这里的这种情况时当外围是相互匹配的时候. dp[s][e]

poj 2955 Brackets(区间DP求最长匹配子串)

思路:假设要求区间[i,j]的最长匹配字串,它必然可以从[i,j-1]转移而来,有可能是s[j]与s[i]发生"关系"(匹配或不匹配),一直到s[j-1],若不发生"关系",即s[j]跟自己发生"关系",用for循环枚举所有的可能,取最大值. 代码: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; char