论文阅读笔记:Fully Convolutional Networks for Semantic Segmentation

这是CVPR 2015拿到best paper候选的论文。

论文下载地址:Fully Convolutional Networks for Semantic Segmentation

尊重原创,转载请注明:http://blog.csdn.net/tangwei2014

1.概览&主要贡献

提出了一种end-to-end的做semantic segmentation的方法,简称FCN

如下图所示,直接拿segmentation 的 ground truth作为监督信息,训练一个端到端的网络,让网络做pixelwise的prediction,直接预测label map。

2.问题&解决办法

1)如何做pixelwise的prediction?

传统的网络是subsampling的,对应的输出尺寸会降低,要想做pixelwise prediction,必须保证输出尺寸。

解决办法:

(1)对传统网络如AlexNet,VGG等的最后全连接层变成卷积层。

例如VGG16中第一个全连接层是25088x4096的,将之解释为512x7x7x4096的卷积核,则如果在一个更大的输入图像上进行卷积操作(上图的下半部分),原来输出4096维feature的节点处(上图的上半部分),就会输出一个coarse feature map。

这样做的好处是,能够很好的利用已经训练好的supervised pre-training的网络,不用像已有的方法那样,从头到尾训练,只需要fine-tuning即可,训练efficient。

(2)加 In-network upsampling layer。

对中间得到的feature map做bilinear上采样,就是反卷积层。实现把conv的前传和反传过程对调一下即可。

2)如何refine,得到更好的结果?

upsampling中步长是32,输入为3x500x500的时候,输出是544x544,边缘很不好。

解决办法:

采用skip layer的方法,在浅层处减小upsampling的步长,得到多个label map prediction,然后做融合。

3.结果

当然是state-of-the-art的了。感受一下:

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-10 01:40:38

论文阅读笔记:Fully Convolutional Networks for Semantic Segmentation的相关文章

论文学习:Fully Convolutional Networks for Semantic Segmentation

发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量.以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的

论文笔记《Fully Convolutional Networks for Semantic Segmentation》

<Fully Convolutional Networks for Semantic Segmentation>,CVPR 2015 best paper,pixel level, fully supervised. 主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation. 我们已经有一个CNN模型,首先要把CNN的全连接层

RCNN学习笔记(8):Fully Convolutional Networks for Semantic Segmentation(全卷积网络FCN)

[论文信息] <Fully Convolutional Networks for Semantic Segmentation> CVPR 2015 best paper Reference link: http://blog.csdn.net/tangwei2014 http://blog.csdn.net/u010025211/article/details/51209504 概览&主要贡献 提出了一种end-to-end的做semantic segmentation的方法,简称FC

FCN笔记(Fully Convolutional Networks for Semantic Segmentation)

FCN笔记(Fully Convolutional Networks for Semantic Segmentation) (1)FCN做的主要操作 (a)将之前分类网络的全连接层都换成卷积层, FCN将全连接层换成了卷积层,最后可以生成一个heatmap.卷积层的大小即为 (1,1,4096).(1,1,4096).(1,1,1000).FCN在做前向和后向计算时,都比之前的方法要快,FCN生成一个10*10的结果,需要22ms,而之前的方法生个1个结果,就需要1.2ms,如果是100个结果,

Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)

摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出.我们定义并指定全卷积网络的空间,解释它们在空间范围内dense prediction任务(预测每个像素所属的类别)和获取与先验模型联系的应用.我们改编当前的分类网络(AlexNet [22] ,the VGG net [34] , and GoogLeNet [35] )到完

FCN:Fully Convolutional Networks for Semantic Segmentation

今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8

论文阅读 | FCOS: Fully Convolutional One-Stage Object Detection

论文阅读——FCOS: Fully Convolutional One-Stage Object Detection 概述 目前anchor-free大热,从DenseBoxes到CornerNet.ExtremeNet,以及最近的FSAF.FoveaBox,避免了复杂的超参数设计,而且具有很好的检测效果.本文作者提出了一种全卷积的单阶段目标检测算法,类似于语义分割的做法使用像素级预测.该检测框架简单有效,而且可以方便地用于其他任务. 简介 再啰嗦一下基于anchor的检测算法的缺陷: 1.检测

目标检测论文阅读:Deformable Convolutional Networks

https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformable的卷积如何实现的一步上,在写这篇博客之前,我也查阅了很多其他人的分享或者去github找代码,当然也不敢说完全了解了这种特殊的卷积--仅仅做一点自己的阅读心得与体会吧.这是一篇很有意义的工作,但是和深度学习很多论文一样,在读完之后内心也不免有着种种疑云. Deformable Convoluti

中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks

R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标检测.与先前的基于区域的检测器(如Fast/Faster R-CNN [6,18])相比,这些检测器应用昂贵的每个区域子网络数百次,我们的基于区域的检测器是全卷积的,几乎所有计算都在整张图像上共享.为了实现这一目标,我们提出了位置敏感分数图,以解决图像分类中的平移不变性与目标检测中的平移变化之间的困