用户态、核心态详解及进程切换和系统调用原理

1)示例

void testfork()
{
	if(0 = = fork())
	{
  		printf(“create new process success!\n”);
   	}
   	printf(“testfork ok\n”);
}

这段代码很简单,从功能的角度来看,就是实际执行了一个fork(),生成一个新的进程,从逻辑的角度看,就是判断了如果fork()返回的是则打印相关语句,然后函数最后再打印一句表示执行完整个testfork()函数。代码的行逻辑和功能上看就是如此简单,一共四行代码,从上到下一句一句执行而已。

2)特权级

如果说前面两种是静态观察的角度看的话,我们还可以从动态的角度来看这段代码,即它被转换成CPU执行的指令后加载执行的过程,这时这段程序就是一个动态执行的指令序列。而究竟加载了哪些代码,如何加载就是和操作系统密切相关了。

熟悉Unix/Linux系统的人都知道,fork的工作实际上是以系统调用的方式完成相应功能的,具体的工作是由sys_fork负责实施。其实无论是不是Unix或者Linux,对于任何操作系统来说,创建一个新的进程都是属于核心功能,因为它要做很多底层细致地工作,消耗系统的物理资源,比如分配物理内存,从父进程拷贝相关信息,拷贝设置页目录页表等等,这些显然不能随便让哪个程序就能去做,于是就自然引出特权级别的概念,显然,最关键性的权力必须由高特权级的程序来执行,这样才可以做到集中管理,减少有限资源的访问和使用冲突。

特权级显然是非常有效的管理和控制程序执行的手段,因此在硬件上对特权级做了很多支持,就Intel x86架构的CPU来说一共有0~3四个特权级,0级最高,3级最低,硬件上在执行每条指令时都会对指令所具有的特权级做相应的检查,相关的概念有 CPL、DPL和RPL。硬件已经提供了一套特权级使用的相关机制,软件自然就是好好利用的问题,这属于操作系统要做的事情,对于
Unix/Linux来说,只使用了0级特权级和3级特权级。也就是说在Unix/Linux系统中,一条工作在级特权级的指令具有了CPU能提供的最高权力,而一条工作在3级特权级的指令具有CPU提供的最低或者说最基本权力。

3)用户态和内核态

      内核态和用户态有自己的内存映射,即自己的地址空间。

用户空间的应用程序,通过系统调用,进入内核空间。由内核代表该进程运行于内核空间,这就涉及到上下文的切换,用户空间和内核空间具有不同的地址映射,通用或专用的寄存器组,而用户空间的进程要传递很多变量、参数给内核,内核也要保存用户进程的一些寄存器、变量等,以便系统调用结束后回到用户空间继续执行。

      所谓的“进程上下文”,就是一个进程在执行的时候,CPU的所有寄存器中的值、进程的状态以及堆栈上的内容,当内核需要切换到另一个进程时,它需要保存当前进程的所有状态,即保存当前进程的进程上下文,以便再次执行该进程时,能够恢复切换时的状态,继续执行。

 
现在我们从特权级的调度来理解用户态和内核态就比较好理解了,当程序运行在3级特权级上时,就可以称之为运行在用户态,因为这是最低特权级,是普通的用户进程运行的特权级,大部分用户直接面对的程序都是运行在用户态;反之,当程序运行在级特权级上时,就可以称之为运行在内核态。

    虽然用户态下和内核态下工作的程序有很多差别,但最重要的差别就在于特权级的不同,即权力的不同。运行在用户态下的程序不能直接访问操作系统内核数据结构和程序,比如上面例子中的testfork()就不能直接调用 sys_fork(),因为前者是工作在用户态,属于用户态程序,而sys_fork()是工作在内核态,属于内核态程序。

    当我们在系统中执行一个程序时,大部分时间是运行在用户态下的,在其需要操作系统帮助完成某些它没有权力和能力完成的工作时就会切换到内核态,比如testfork()最初运行在用户态进程下,当它调用fork()最终触发
sys_fork()的执行时,就切换到了内核态。

4)用户态和内核态的转换

1.用户态切换到内核态的3种方式

a. 系统调用

这是用户态进程主动要求切换到内核态的一种方式,用户态进程通过系统调用申请使用操作系统提供的服务程序完成工作,比如前例中fork()实际上就是执行了一个创建新进程的系统调用。而系统调用的机制其核心还是使用了操作系统为用户特别开放的一个中断来实现,例如Linux的int 80h中断。

b. 异常             

当CPU在执行运行在用户态下的程序时,发生了某些事先不可知的异常,这时会触发由当前运行进程切换到处理此异常的内核相关程序中,也就转到了内核态,比如缺页异常。

c. 外围设备的中断

当外围设备完成用户请求的操作后,会向CPU发出相应的中断信号,这时CPU会暂停执行下一条即将要执行的指令转而去执行与中断信号对应的处理程序,如果先前执行的指令是用户态下的程序,那么这个转换的过程自然也就发生了由用户态到内核态的切换。比如硬盘读写操作完成,系统会切换到硬盘读写的中断处理程序中执行后续操作等。

这3种方式是系统在运行时由用户态转到内核态的最主要方式,其中系统调用可以认为是用户进程主动发起的,异常和外围设备中断则是被动的。

2.具体的切换操作

从触发方式上看,可以认为存在前述3种不同的类型,但是从最终实际完成由用户态到内核态的切换操作上来说,涉及的关键步骤是完全一致的,没有任何区别,都相当于执行了一个中断响应的过程,因为系统调用实际上最终是中断机制实现的,而异常和中断的处理机制基本上也是一致的,关于它们的具体区别这里不再赘述。关于中断处理机制的细节和步骤这里也不做过多分析,涉及到由用户态切换到内核态的步骤主要包括:

[1] 从当前进程的描述符中提取其内核栈的ss0及esp0信息。

[2] 使用ss0和esp0指向的内核栈将当前进程的cs,eip,eflags,ss,esp信息保存起来,这个过程也完成了由用户栈到内核栈的切换过程,同时保存了被暂停执行的程序的下一条指令。

[3] 将先前由中断向量检索得到的中断处理程序的cs,eip信息装入相应的寄存器,开始执行中断处理程序,这时就转到了内核态的程序执行了。

时间: 2024-10-13 00:05:32

用户态、核心态详解及进程切换和系统调用原理的相关文章

Linux进程上下文切换过程context_switch详解--Linux进程的管理与调度(二十一)【转】

转自:http://blog.csdn.net/gatieme/article/details/51872659 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme 目录(?)[-] 前景回顾 1 Linux的调度器组成 2 调度工作 进程上下文 1 进程上下文的概念 2 上下文切换 context_switch进程上下文切换 1 context_switch完全注释 2 prepare_arch_switch切换前的准备工作

Linux学习笔记——用户及权限详解

用户及权限详解    用户.组.权限 安全上下文(secure context): 权限: r   w   x  文件: r:可读,可以使用类似cat等命令查看文件内容: w:可写,可以编辑或删除此文件: X:可执行,exacutable,可以命令提示符下当作命令提交给内核运行:  目录: r:可以对此目录执行ls以列出内部的所有文件: w:可以在此目录创建文件: x:可以使用cd切换进此目录,也可以使用ls -l查看内部文件的详细信息: rwx: r--:只读 r-x:读和执行 ---:无权限

第三课 第四讲03_04_Linux用户及权限详解

第三课 第四讲03_04_Linux用户及权限详解1.库和进程是同级的.进程可以获取CPU时间,内存地址,调用各种文件2.权限:定义了计算机资源和服务的访问能力叫权限3.逻辑容器,用户 关联权限就是用户组.用于指派权限,不能独立登陆 4.文件属主,文件属组,其他,5.用户和组在计算机里面就是个标识符6.进程也有属主和属组进程的安全上下文(secure context),进程属主和资源属主7.文件r,w,xr:read可读,可用使用文件查看命令cat等命令查看文件内容w:write可写.可用使用文

详解Supervisor进程守护监控

Supervisor在百度百科上给的定义是超级用户,监管员.Supervisor是一个进程管理工具,当进程中断的时候Supervisor能自动重新启动它.可以运行在各种类unix的机器上,supervisor就是用Python开发的一套通用的进程管理程序,能将一个普通的命令行进程变为后台daemon,并监控进程状态,异常退出时能自动重启. v介绍Supervisor - supervisord 运行 Supervisor 时会启动一个进程 supervisord,它负责启动所管理的进程,并将所管

Linux 必备技能-用户及权限详解

Linux必备技能-用户及权限详解 /etc/passwd文件 Account:password:UID:GID:GECOS:directory:shell 登录名:密码点位符:UID:GID:注释信息:家目录:用户的默认shell 用户可以加入不止一个组: 基本组 额外组,附加组 /etc/group文件: 组名:组密码定位符:GID:以逗号分隔属于此组(以之做为额外组)的用户列表 Useradd命令: -uUID -gGID: 所属的基本组 -GGID: 所属的附加组 -c'COMMENT'

Linux学习笔记—— 用户管理命令详解

 用户管理命令详解  用户管理: useradd,userdel,usermod,passwd,chsh,chfn,finger,id,chage 添加用户: useradd [options] USERNAME    -u (UID)   手动指定UID -g (GID)  (基本组) -G, ...     (附加组) 可以有多个,彼此之间用,号隔开 -c "COMMENT"         注释信息     -d /path/to/somedirectory  指定家目录 -s

Linux 系统的用户和组详解_【all】

1.Linux 用户和用户组详解 2.Linux 文件特殊权限详解 3.Linux 文件的读写执行权限的说明 4.Linux 架构之简述企业网站 原文地址:https://www.cnblogs.com/ftl1012/p/9280690.html

第四课-第一讲04_01_Linux用户管理命令详解

第四课-第一讲04_01_Linux用户管理命令详解1.useradd [option] USERNAME-u UID(大于500且没使用过的)-c 用户说明,COMMENT-d 家目录 HOME-g GID 基本组ID-G GID,....附加值ID-s 默认shell,指定要用的shell的路径-m(常和-k一起用) 强制指定家目录-M 不创建用户家目录环境变量:PATHHISTSIZESHELL:保持当前用户的默认shell的路径/etc/shells:指定了当前系统可用的安全shell/

Java网络编程和NIO详解6:Linux epoll实现原理详解

Java网络编程和NIO详解6:Linux epoll实现原理详解 本系列文章首发于我的个人博客:https://h2pl.github.io/ 欢迎阅览我的CSDN专栏:Java网络编程和NIO https://blog.csdn.net/column/details/21963.html 部分代码会放在我的的Github:https://github.com/h2pl/ Linux epoll实现原理详解 在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者pol