Android-多线程AsyncTask

http://www.cnblogs.com/plokmju/p/android_AsyncTask.html

AsyncTask,异步任务,可以简单进行异步操作,并把执行结果发布到UI主线程。AsyncTask是一个抽象类,它的内部其实也是结合了Thread和Handler来实现异步线程操作,但是它形成了一个通用线程框架,更清晰简单。AsyncTask应该被用于比较简短的操作(最多几秒钟)。如果需要保持长时间运行的线程,可以使用ThreadPooExecutor或者FutureTask

首先来看一下AsyncTask的基本用法,由于AsyncTask是一个抽象类,所以如果我们想使用它,就必须要创建一个子类去继承它。在继承时我们可以为AsyncTask类指定三个泛型参数,这三个参数的用途如下:

1. Params

在执行AsyncTask时需要传入的参数,可用于在后台任务中使用。

2. Progress

后台任务执行时,如果需要在界面上显示当前的进度,则使用这里指定的泛型作为进度单位。

3. Result

当任务执行完毕后,如果需要对结果进行返回,则使用这里指定的泛型作为返回值类型。

AsyncTask的使用规则

  使用AsyncTask必须遵循以下规则:

  • AsyncTask必须声明在UI线程上。
  • AsyncTask必须在UI线程上实例化。
  • 必须通过execute()方法执行任务。
  • 不可以直接调用onPreExecute()、onPostExecute(Resut)、doInBackground(Params...)、onProgressUpdate(Progress...)方法。
  • 可以设置任务只执行一次,如果企图再次执行会报错。

第一个因为AsyncTask内置了handler,所以在主线程运行最好。不过调用Looper.prepare后似乎也可以在子线程运行

使用方法在第一个链接里很清楚,下面来看一下源码:

http://blog.csdn.net/guolin_blog/article/details/11711405

  • 可以看到源码execute时调用了executeOnExecutor()方法,在这里调用了onPreExecute(),保证了他第一个执行
  • 接着调用了Executor的execute()方法,并将前面初始化的mFuture对象传了进去
  • 接着就来到FutureTask类的run()方法,这里开启了一个子线程,调用call方法,而call方法调用了doInBackground()方法,这保证了方法在子线程里执行
  • postResult()方法,源码如下:
private Result postResult(Result result) {
    Message message = sHandler.obtainMessage(MESSAGE_POST_RESULT,
            new AsyncTaskResult<Result>(this, result));
    message.sendToTarget();
    return result;
}  

  可以看到,实际上就是用handler处理返回的结果,回到主线程

private static class InternalHandler extends Handler {
    @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
    @Override
    public void handleMessage(Message msg) {
        AsyncTaskResult result = (AsyncTaskResult) msg.obj;
        switch (msg.what) {
            case MESSAGE_POST_RESULT:
                // There is only one result
                result.mTask.finish(result.mData[0]);
                break;
            case MESSAGE_POST_PROGRESS:
                result.mTask.onProgressUpdate(result.mData);
                break;
        }
    }
}  

  InernalHandler接受两种信息,如果这是一条MESSAGE_POST_RESULT消息,就会去执行finish()方法,如果这是一条MESSAGE_POST_PROGRESS消息,就会去执行onProgressUpdate()方法。那么finish()方法的源码如下所示:

private void finish(Result result) {
    if (isCancelled()) {
        onCancelled(result);
    } else {
        onPostExecute(result);
    }
    mStatus = Status.FINISHED;
} 

  可以看到,如果当前任务被取消掉了,就会调用onCancelled()方法,如果没有被取消,则调用onPostExecute()方法,这样当前任务的执行就全部结束了。

  从上面还可以看到,运行中可以随时调用cancel(boolean)方法取消任务,如果成功调用isCancelled()会返回true,并且不会执行 onPostExecute() 方法了,取而代之的是调用 onCancelled() 方法。

  而且从源码看,如果这个任务已经执行了这个时候调用cancel是不会真正的把task结束,而是继续执行,只不过改变的是执行之后的回调方法是 onPostExecute还是onCancelled。

  onProgressUpdate()方法源码如下:

protected final void publishProgress(Progress... values) {
    if (!isCancelled()) {
        sHandler.obtainMessage(MESSAGE_POST_PROGRESS,
                new AsyncTaskResult<Progress>(this, values)).sendToTarget();
    }
}  

  同样是发给handler处理,所以是在主线程运行的

  SerialExecutor详细:

   其实SerialExecutor也是AsyncTask在3.0版本以后做了最主要的修改的地方,它在AsyncTask中是以常量的形式被使用的,因此在整个应用程序中的所有AsyncTask实例都会共用同一个SerialExecutor

private static class SerialExecutor implements Executor {
    final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
    Runnable mActive;  

    public synchronized void execute(final Runnable r) {
        mTasks.offer(new Runnable() {
            public void run() {
                try {
                    r.run();
                } finally {
                    scheduleNext();
                }
            }
        });
        if (mActive == null) {
            scheduleNext();
        }
    }  

    protected synchronized void scheduleNext() {
        if ((mActive = mTasks.poll()) != null) {
            THREAD_POOL_EXECUTOR.execute(mActive);
        }
    }
}  

可以看到,SerialExecutor是使用ArrayDeque这个队列来管理Runnable对象的,如果我们一次性启动了很多个任务,首先在第一次运行execute()方法的时候,会调用ArrayDeque的offer()方法将传入的Runnable对象添加到队列的尾部,然后判断mActive对象是不是等于null,第一次运行当然是等于null了,于是会调用scheduleNext()方法。在这个方法中会从队列的头部取值,并赋值给mActive对象,然后调用THREAD_POOL_EXECUTOR去执行取出的取出的Runnable对象。之后如何又有新的任务被执行,同样还会调用offer()方法将传入的Runnable添加到队列的尾部,但是再去给mActive对象做非空检查的时候就会发现mActive对象已经不再是null了,于是就不会再调用scheduleNext()方法。

那么后面添加的任务岂不是永远得不到处理了?当然不是,看一看offer()方法里传入的Runnable匿名类,这里使用了一个try finally代码块,并在finally中调用了scheduleNext()方法,保证无论发生什么情况,这个方法都会被调用。也就是说,每次当一个任务执行完毕后,下一个任务才会得到执行,SerialExecutor模仿的是单一线程池的效果,如果我们快速地启动了很多任务,同一时刻只会有一个线程正在执行,其余的均处于等待状态。Android照片墙应用实现,再多的图片也不怕崩溃 这篇文章中例子的运行结果也证实了这个结论。

在Android 3.0之前是并没有SerialExecutor这个类的,那个时候是直接在AsyncTask中构建了一个sExecutor常量,并对线程池总大小,同一时刻能够运行的线程数做了规定,代码如下所示:

private static final int CORE_POOL_SIZE = 5;
private static final int MAXIMUM_POOL_SIZE = 128;
private static final int KEEP_ALIVE = 10;
……
private static final ThreadPoolExecutor sExecutor = new ThreadPoolExecutor(CORE_POOL_SIZE,
        MAXIMUM_POOL_SIZE, KEEP_ALIVE, TimeUnit.SECONDS, sWorkQueue, sThreadFactory);  

可以看到,这里规定同一时刻能够运行的线程数为5个,线程池总大小为128。也就是说当我们启动了10个任务时,只有5个任务能够立刻执行,另外的5个任务则需要等待,当有一个任务执行完毕后,第6个任务才会启动,以此类推。而线程池中最大能存放的线程数是128个,当我们尝试去添加第129个任务时,程序就会崩溃。

因此在3.0版本中AsyncTask的改动还是挺大的,在3.0之前的AsyncTask可以同时有5个任务在执行,而3.0之后的AsyncTask同时只能有1个任务在执行。为什么升级之后可以同时执行的任务数反而变少了呢?这是因为更新后的AsyncTask已变得更加灵活,如果不想使用默认的线程池,还可以自由地进行配置。比如使用如下的代码来启动任务:

Executor exec = new ThreadPoolExecutor(15, 200, 10,
        TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());
new DownloadTask().executeOnExecutor(exec);  

这样就可以使用我们自定义的一个Executor来执行任务,而不是使用SerialExecutor。上述代码的效果允许在同一时刻有15个任务正在执行,并且最多能够存储200个任务。

需要注意的地方:

http://www.open-open.com/lib/view/open1434802647364.html

上面提到了那么多的注意点,还有其他需要注意的吗?当然有!我们开发App过程中使用AsyncTask请求网络数据的时候,一般都是习惯在onPreExecute显示进度条,在数据请求完成之后的onPostExecute关闭进度条。这样做看似完美,但是如果您的App没有明确指定屏幕方向和configChanges时,当用户旋转屏幕的时候Activity就会重新启动,而这个时候您的异步加载数据的线程可能正在请求网络。当一个新的Activity被重新创建之后,可能由重新启动了一个新的任务去请求网络,这样之前的一个异步任务不经意间就泄露了,假设你还在onPostExecute写了一些其他逻辑,这个时候就会发生意想不到异常。

一般简单的数据类型的,对付configChanges我们很好处理,我们直接可以通过onSaveInstanceState()和onRestoreInstanceState()进行保存与恢复。 Android会在销毁你的Activity之前调用onSaveInstanceState()方法,于是,你可以在此方法中存储关于应用状态的数据。然后你可以在onCreate()或onRestoreInstanceState()方法中恢复。

但是,对于AsyncTask怎么办?问题产生的根源在于Activity销毁重新创建的过程中AsyncTask和之前的Activity失联,最终导致一些问题。那么解决问题的思路也可以朝着这个方向发展。Android官方文档 也有一些解决问题的线索。

这里介绍另外一种使用事件总线的解决方案,是国外一个安卓大牛写的。中间用到了Square开源的EventBus类库http://square.github.io/otto/。首先自定义一个AsyncTask的子类,在onPostExecute方法中,把返回结果抛给事件总线,代码如下:

@Override
    protected String doInBackground(Void... params) {
        Random random = new Random();
        final long sleep = random.nextInt(10);
        try {
            Thread.sleep(10 * 6000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return "Slept for " + sleep + " seconds";
    }

    @Override
    protected void onPostExecute(String result) {
        MyBus.getInstance().post(new AsyncTaskResultEvent(result));
    }

  在Activity的onCreate中注册这个事件总线,这样异步线程的消息就会被otta分发到当前注册的activity,这个时候返回结果就在当前activity的onAsyncTaskResult中了,代码如下:

@Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.otto_layout);

        findViewById(R.id.button).setOnClickListener(new View.OnClickListener() {
            @Override public void onClick(View v) {
                new MyAsyncTask().execute();
            }
        });

        MyBus.getInstance().register(this);
    }

    @Override
    protected void onDestroy() {
        MyBus.getInstance().unregister(this);
        super.onDestroy();
    }

    @Subscribe
    public void onAsyncTaskResult(AsyncTaskResultEvent event) {
        Toast.makeText(this, event.getResult(), Toast.LENGTH_LONG).show();
    }

  个人觉的这个方法相当好,当然更简单的你也可以不用otta这个库,自己单独的用接口回调的方式估计也能实现,大家可以试试。

时间: 2024-10-23 09:12:09

Android-多线程AsyncTask的相关文章

Android 多线程-----AsyncTask详解

本篇随笔将讲解一下Android的多线程的知识,以及如何通过AsyncTask机制来实现线程之间的通信. 一.Android当中的多线程 在Android当中,当一个应用程序的组件启动的时候,并且没有其他的应用程序组件在运行时,Android系统就会为该应用程序组件开辟一个新的线程来执行.默认的情况下,在一个相同Android应用程序当中,其里面的组件都是运行在同一个线程里面的,这个线程我们称之为Main线程.当我们通过某个组件来启动另一个组件的时候,这个时候默认都是在同一个线程当中完成的.当然

Android多线程----异步消息处理机制之Handler详解

关于Android的多线程知识,请参考本人之前的一篇博客:Android 多线程----AsyncTask异步任务详解 在Android当中,提供了异步消息处理机制的两种方式来解决线程之间的通信问题,一种是今天要讲的Handler的机制,还有一种就是之前讲过的 AsyncTask 机制. 一.handler的引入: 我们都知道,Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃.相信大家在日常的工作当中都会经常遇到这个问题,解决的方案应该也是早已烂熟于心,即创

Android多线程分析之五:使用AsyncTask异步下载图像

Android多线程分析之五:使用AsyncTask异步下载图像 罗朝辉 (http://blog.csdn.net/kesalin) CC 许可,转载请注明出处 在本系列文章的第一篇<Android多线程分析之中的一个:使用Thread异步下载图像>中.曾演示了怎样使用 Thread 来完毕异步任务. Android 为了简化在 UI 线程中完毕异步任务(毕竟 UI 线程是 app 最重要的线程).实现了一个名为 AysncTask 的模板类.使用 AysncTask 能够在异步任务进行的同

Android多线程编程之AsyncTask

进程?线程? 进程是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态的概念.每个进程都有自己的地址空间(进程空间).进程空间的大小与处理机位数有关.进程至少有5种基本状态:初始态,执行态,等待状态,就绪状态,终止状态. 在多用户环境下,一个服务器通常需要接受大量的不学定数量用户的并发请求,而为每一个请求都创建一个进程非常不明智,无论从系统资源开销方面还是响应用户请求的效率上来看.这也是多线程诞生的一个原因.线程是进程的一部分,一个没有线程的进程可以看做是单线程.线程也是CPU调度的

Android多线程(一)之AsyncTask

在Android应用的开发过程中,我们不可避免的要使用多线程,获取服务器数据.下载网络数据.遍历文件目录查找特定文件等等耗时的工作都离不开线程的知识.Android继承了Java的多线程体系,同时又实现了许多更加简易的API来操作线程.通过这些API,我们可以方便快捷的实现线程的创建.线程间的交互.我打算记下最近自己学习Android多线程机制时的学习笔记,一来可以供以后翻阅查看,二来为那些正疑惑与此的朋友提供一条结局的途径. 先大招说一下我想写的内容: 一.AsyncTask 二.Thread

Android多线程任务的优化1:AsyncTask的缺陷 (转至 http://www.linuxidc.com/Linux/2011-09/43150.htm)

导语:在开发Android应用的过程中,我们需要时刻注意保障应用的稳定性和界面响应性,因为不稳定或者响应速度慢的应用将会给用户带来非常差的交互体验.在越来越讲究用户体验的大环境下,用户也许会因为应用的一次Force Close(简称FC)或者延迟严重的动画效果而卸载你的应用.由于现在的应用大多需要异步连接网络,本系列文章就以构建网络应用为例,从稳定性和响应性两个角度分析多线程网络任务的性能优化方法. 概述:为了不阻塞UI线程(亦称主线程),提高应用的响应性,我们经常会使用新开线程的方式,异步处理

[高级]Android多线程任务优化1:探讨AsyncTask的缺陷

导语:在开发Android应用的过程中,我们需要时刻注意保障应用的稳定性和界面响应性,因为不稳定或者响应速度慢的应用将会给用户带来非常差的交互体验.在越来越讲究用户体验的大环境下,用户也许会因为应用的一次Force Close(简称FC)或者延迟严重的动画效果而卸载你的应用.由于现在的应用大多需要异步连接网络,本系列文章就以构建网络应用为例,从稳定性和响应性两个角度分析多线程网络任务的性能优化方法. 概述:为了不阻塞UI线程(亦称主线程),提高应用的响应性,我们经常会使用新开线程的方式,异步处理

Android多线程分析之四:MessageQueue的实现

罗朝辉 (http://blog.csdn.net/kesalin) CC 许可,转载请注明出处 在前面两篇文章<Android多线程分析之二:Thread的实现>,<Android多线程分析之三:Handler,Looper的实现>中分别介绍了 Thread 的创建,运行,销毁的过程以及 Thread与 Handler,Looper 之间的关联:Thread 在其 run() 方法中创建和运行消息处理循环 Looper,而 Looper::loop() 方法不断地从 Messag

Android Handler AsyncTask 消息机制

一.Android消息机制一 Android 有一种叫消息队列的说法,这里我们可以这样理解:假如一个隧道就是一个消息队列,那么里面的每一部汽车就是一个一个消息,这里我们先忽略掉超车等种种因素,只那么先进隧道的车将会先出,这个机制跟我们android 的消息机制是一样的. 角色描述 1. Looper:(相当于隧道) 一个线程可以产生一个Looper 对象,由它来管理此线程里的Message Queue( 车队,消息隧道) . 2. Handler: 你可以构造Handler 对象来与Looper

Android多线程消息处理机制

(1)主线程和ANR 主线程:UI线程,界面的修改只能在主线程中,其它线程对界面进行修改会造成异常.这样就解决了多线程竞争UI资源的问题. 一旦主线程的代码阻塞,界面将无法响应,这种行为就是Application Is Not Respond(ANR),应用失去响应. 如果主线程中某个事件操作时间超过5秒没有得到响应,Android可能会弹出一个应用程序没有响应的对话框.activity可能会被杀掉. 下面用实例来说明ANR,demo如下,这个时候按钮就会失去响应 private Button