BZOJ 1068 【SCOI2007】 压缩

题目链接:压缩

  区间动归水题。稍微有一点细节。

  令\(f_{l,r}\)表示区间\([l,r]\)最短压缩长度,默认\(l\)位置之前有个\(M\)。然后就枚举一下放不放\(R\),\(M\)放哪个位置或者不放,记忆搜很好写。

  但是细节就在于,每个\(R\)的有效区间是到上一个\(M\),所以我们枚举在哪里放\(R\)之后,左边的区间内是不能放\(M\)的。所以在状态里多加一维,表示当前这个区间内能不能放\(M\),直接转移就行了。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define N 61

using namespace std;
typedef long long llg;

char s[N];
int f[N][N][2];

bool pd(int l,int r){
	for(int i=l,j=r;i<r;i++,j++)
		if(s[i]!=s[j]) return 0;
	return 1;
}

int gi(int l,int r,bool w);
int dfs(int l,int r,bool w){
	if(f[l][r][w]) return f[l][r][w];
	int now=r-l+1,mid=(l+r+1)>>1;
	for(int i=l+1;i<=mid;i++)
		if(pd(l,i)) now=min(now,dfs(l,i-1,0)+gi(i*2-l,r,w)+1);
	if(w) for(int i=l+1;i<=r;i++) now=min(now,dfs(l,i-1,1)+gi(i,r,1));
	return f[l][r][w]=now;
}

int gi(int l,int r,bool w){
	if(l>r) return 0; int now=r-l+1;
	if(w) now=min(now,dfs(l,r,1)+1);
	return now;
}

int main(){
	File("a");
	scanf("%s",s+1);
	printf("%d",dfs(1,strlen(s+1),1));
	return 0;
}
时间: 2024-10-10 08:26:03

BZOJ 1068 【SCOI2007】 压缩的相关文章

bzoj 1068: [SCOI2007]压缩 DP

1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 496  Solved: 315[Submit][Status] Description 给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息.压缩后的字符串除了小写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一个M(如果当前位置左边没有M,则从串的开始算起)开始的解压结果(称为缓冲串). bcdcdcdcd可以

[BZOJ 1068] [SCOI2007] 压缩 【区间 DP 】

题目链接:BZOJ - 1068 题目分析 这种区间 DP 之前就做过类似的,也是字符串压缩问题,不过这道题稍微复杂一些. 需要注意如果某一段是 S1S1 重复,那么可以变成 M + Solve(S1) + R ,不过这个 Solve(S1) 中不能在中间有 M ,否则后面的 R 向前找到的 M 就不再是开头的 M 了. 代码 #include <iostream> #include <cstdio> #include <cstring> #include <al

bzoj 1068: [SCOI2007]压缩【区间dp】

神区间dp 设f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内只有这一个M,f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内有两个及以上的M 然后显然的转移是f[i][j][1]=min(f[i][k][0],f[i][k][1])+min(f[k+1][j][0],f[k+1][j][1])+1,f[i][j][0]=f[i][j][0],f[i][k][0]+j-k 然后考虑合并串,也就是当(l,mid),(mid+1,r)的串相等的时候,转移f[i][j][

bzoj 1068: [SCOI2007]压缩

做之前可以先做一下这题 http://www.lydsy.com/JudgeOnline/problem.php?id=1090 本来是想做一道区间DP的 然而太弱 并没有很快理解如何用传统区间DP(区间合并)来写这题 于是先用自己yy的比较水的方法做了一遍(其实也就是模拟题意中的压缩操作) 用f[i][j]表示 现在原串处理好了第i位 且缓冲串长度为j时的最小花费 那么f[i][j]可以从这三种情况转移过来 f[i-1][j-1]+1 (填原字母) f[i-j/2][j/2]+1 (填R,j为

BZOJ 1068 [SCOI2007]压缩 区间DP

题意:链接 方法:区间DP 解析: MD写题解(吐槽)写到一半markdown挂了什么鬼! 要不要这样!你知道我的内心是什么样的吗! 吐槽,啊呸,写题解写到一半突然丢失了我的内心是崩溃的好吗! 来我们重新写题解(吐槽) 这道题我刚开始列了个瞎(和谐)动规(二维的裸区间) 加上乱七八糟的判断是否有M后,居然有交叉! 一定是我逻辑错误,对就是这样! 后来又是一顿瞎(和谐)搞之后,代码抽的爆炸,然后我一测,c-free挂掉- - 过了一个小时后,我选择死亡. 然后看了一眼hzw的题解. 看到那个三维之

【BZOJ】1068: [SCOI2007]压缩(dp)

http://www.lydsy.com/JudgeOnline/problem.php?id=1068 发现如果只设一维的话无法转移 那么我们开第二维,发现对于前i个来说,如果确定了M在哪里,第i个是用R还是不用就能确定了(如果用R那么在中间一定变成了缓冲串) 那么可以转移了 设d[i,j]表示前i个串,最近的一个M在i的前边一个格子,的最短长度,有 d[1,1]=1 d[i,i]=min{d[i-1,j]}+2 //即用一次M又补上i,所以+2 d[i,j]=d[pos,j]+1,其中pos

BZOJ 1068

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1068 题意:字符串压缩.M表示一个重复串的开始,R表示与其前面一个M之间的重复.压缩出最短的串. 思路:f[i][j][0]还没有M,f[i][j][1]已经有M. char s[N]; int ok(int L,int R) { int M=(R-L+1)>>1; int i; for(i=0;i<M;i++) if(s[L+i]!=s[L+M+i]) return 0; r

BZOJ 1087状态压缩DP

状态压缩DP真心不会写,参考了别人的写法. 先预处理出合理状态, 我们用二进制表示可以放棋子的状态,DP[I][J][K]:表示现在处理到第I行,J:表示第I行的状态,K表示现在为止一共放的棋子数量. #include<stdio.h> #include<iostream> #define N 1111 using namespace std; typedef long long ll; int num,n,m; ll dp[11][1<<11][90]; int hh

BZOJ 1073: [SCOI2007]kshort

二次联通门 : BZOJ 1073: [SCOI2007]kshort /* BZOJ 1073: [SCOI2007]kshort A* k短路 但是会爆一个点, 是卡A*的 */ #include <cstdio> #include <iostream> #include <cstring> #include <queue> #include <vector> #include <algorithm> #include <c