【死磕Java并发】----深入分析CAS

CAS,Compare And Swap,即比较并交换。Doug lea大神在同步组件中大量使用CAS技术鬼斧神工地实现了Java多线程的并发操作。整个AQS同步组件、Atomic原子类操作等等都是以CAS实现的,甚至ConcurrentHashMap在1.8的版本中也调整为了CAS+Synchronized。可以说CAS是整个JUC的基石。

CAS分析

在CAS中有三个参数:内存值V、旧的预期值A、要更新的值B,当且仅当内存值V的值等于旧的预期值A时才会将内存值V的值修改为B,否则什么都不干。其伪代码如下:

if(this.value == A){
    this.value = B
    return true;
}else{
    return false;
}

JUC下的atomic类都是通过CAS来实现的,下面就以AtomicInteger为例来阐述CAS的实现。如下:

    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }

    private volatile int value;

Unsafe是CAS的核心类,Java无法直接访问底层操作系统,而是通过本地(native)方法来访问。不过尽管如此,JVM还是开了一个后门:Unsafe,它提供了硬件级别的原子操作。

valueOffset为变量值在内存中的偏移地址,unsafe就是通过偏移地址来得到数据的原值的。

value当前值,使用volatile修饰,保证多线程环境下看见的是同一个。

我们就以AtomicInteger的addAndGet()方法来做说明,先看源代码:

    public final int addAndGet(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
    }

    public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            var5 = this.getIntVolatile(var1, var2);
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

        return var5;
    }

内部调用unsafe的getAndAddInt方法,在getAndAddInt方法中主要是看compareAndSwapInt方法:

    public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

该方法为本地方法,有四个参数,分别代表:对象、对象的地址、预期值、修改值(有位伙伴告诉我他面试的时候就问到这四个变量是啥意思…+_+)。该方法的实现这里就不做详细介绍了,有兴趣的伙伴可以看看openjdk的源码。

CAS可以保证一次的读-改-写操作是原子操作,在单处理器上该操作容易实现,但是在多处理器上实现就有点儿复杂了。

CPU提供了两种方法来实现多处理器的原子操作:总线加锁或者缓存加锁。

总线加锁:总线加锁就是就是使用处理器提供的一个LOCK#信号,当一个处理器在总线上输出此信号时,其他处理器的请求将被阻塞住,那么该处理器可以独占使用共享内存。但是这种处理方式显得有点儿霸道,不厚道,他把CPU和内存之间的通信锁住了,在锁定期间,其他处理器都不能其他内存地址的数据,其开销有点儿大。所以就有了缓存加锁。

缓存加锁:其实针对于上面那种情况我们只需要保证在同一时刻对某个内存地址的操作是原子性的即可。缓存加锁就是缓存在内存区域的数据如果在加锁期间,当它执行锁操作写回内存时,处理器不在输出LOCK#信号,而是修改内部的内存地址,利用缓存一致性协议来保证原子性。缓存一致性机制可以保证同一个内存区域的数据仅能被一个处理器修改,也就是说当CPU1修改缓存行中的i时使用缓存锁定,那么CPU2就不能同时缓存了i的缓存行。

CAS缺陷

CAS虽然高效地解决了原子操作,但是还是存在一些缺陷的,主要表现在三个方法:循环时间太长、只能保证一个共享变量原子操作、ABA问题。

循环时间太长

如果CAS一直不成功呢?这种情况绝对有可能发生,如果自旋CAS长时间地不成功,则会给CPU带来非常大的开销。在JUC中有些地方就限制了CAS自旋的次数,例如BlockingQueue的SynchronousQueue。

只能保证一个共享变量原子操作

看了CAS的实现就知道这只能针对一个共享变量,如果是多个共享变量就只能使用锁了,当然如果你有办法把多个变量整成一个变量,利用CAS也不错。例如读写锁中state的高地位

ABA问题

CAS需要检查操作值有没有发生改变,如果没有发生改变则更新。但是存在这样一种情况:如果一个值原来是A,变成了B,然后又变成了A,那么在CAS检查的时候会发现没有改变,但是实质上它已经发生了改变,这就是所谓的ABA问题。对于ABA问题其解决方案是加上版本号,即在每个变量都加上一个版本号,每次改变时加1,即A —> B —> A,变成1A —> 2B —> 3A。

用一个例子来阐述ABA问题所带来的影响。

有如下链表

假如我们想要把B替换为A,也就是compareAndSet(this,A,B)。线程1执行B替换A操作,线程2主要执行如下动作,A 、B出栈,然后C、A入栈,最终该链表如下:

完成后线程1发现仍然是A,那么compareAndSet(this,A,B)成功,但是这时会存在一个问题就是B.next = null,compareAndSet(this,A,B)后,会导致C丢失,改栈仅有一个B元素,平白无故把C给丢失了。

CAS的ABA隐患问题,解决方案则是版本号,Java提供了AtomicStampedReference来解决。AtomicStampedReference通过包装[E,Integer]的元组来对对象标记版本戳stamp,从而避免ABA问题。对于上面的案例应该线程1会失败。

AtomicStampedReference的compareAndSet()方法定义如下:

    public boolean compareAndSet(V   expectedReference,
                                 V   newReference,
                                 int expectedStamp,
                                 int newStamp) {
        Pair<V> current = pair;
        return
            expectedReference == current.reference &&
            expectedStamp == current.stamp &&
            ((newReference == current.reference &&
              newStamp == current.stamp) ||
             casPair(current, Pair.of(newReference, newStamp)));
    }

compareAndSet有四个参数,分别表示:预期引用、更新后的引用、预期标志、更新后的标志。源码部门很好理解预期的引用 == 当前引用,预期的标识 == 当前标识,如果更新后的引用和标志和当前的引用和标志相等则直接返回true,否则通过Pair生成一个新的pair对象与当前pair CAS替换。Pair为AtomicStampedReference的内部类,主要用于记录引用和版本戳信息(标识),定义如下:

    private static class Pair<T> {
        final T reference;
        final int stamp;
        private Pair(T reference, int stamp) {
            this.reference = reference;
            this.stamp = stamp;
        }
        static <T> Pair<T> of(T reference, int stamp) {
            return new Pair<T>(reference, stamp);
        }
    }

    private volatile Pair<V> pair;

Pair记录着对象的引用和版本戳,版本戳为int型,保持自增。同时Pair是一个不可变对象,其所有属性全部定义为final,对外提供一个of方法,该方法返回一个新建的Pari对象。pair对象定义为volatile,保证多线程环境下的可见性。在AtomicStampedReference中,大多方法都是通过调用Pair的of方法来产生一个新的Pair对象,然后赋值给变量pair。如set方法:

    public void set(V newReference, int newStamp) {
        Pair<V> current = pair;
        if (newReference != current.reference || newStamp != current.stamp)
            this.pair = Pair.of(newReference, newStamp);
    }

下面我们将通过一个例子可以可以看到AtomicStampedReference和AtomicInteger的区别。我们定义两个线程,线程1负责将100 —> 110 —> 100,线程2执行 100 —>120,看两者之间的区别。

public class Test {
    private static AtomicInteger atomicInteger = new AtomicInteger(100);
    private static AtomicStampedReference atomicStampedReference = new AtomicStampedReference(100,1);

    public static void main(String[] args) throws InterruptedException {

        //AtomicInteger
        Thread at1 = new Thread(new Runnable() {
            @Override
            public void run() {
                atomicInteger.compareAndSet(100,110);
                atomicInteger.compareAndSet(110,100);
            }
        });

        Thread at2 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    TimeUnit.SECONDS.sleep(2);      // at1,执行完
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("AtomicInteger:" + atomicInteger.compareAndSet(100,120));
            }
        });

        at1.start();
        at2.start();

        at1.join();
        at2.join();

        //AtomicStampedReference

        Thread tsf1 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    //让 tsf2先获取stamp,导致预期时间戳不一致
                    TimeUnit.SECONDS.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 预期引用:100,更新后的引用:110,预期标识getStamp() 更新后的标识getStamp() + 1
                atomicStampedReference.compareAndSet(100,110,atomicStampedReference.getStamp(),atomicStampedReference.getStamp() + 1);
                atomicStampedReference.compareAndSet(110,100,atomicStampedReference.getStamp(),atomicStampedReference.getStamp() + 1);
            }
        });

        Thread tsf2 = new Thread(new Runnable() {
            @Override
            public void run() {
                int stamp = atomicStampedReference.getStamp();

                try {
                    TimeUnit.SECONDS.sleep(2);      //线程tsf1执行完
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("AtomicStampedReference:" +atomicStampedReference.compareAndSet(100,120,stamp,stamp + 1));
            }
        });

        tsf1.start();
        tsf2.start();
    }

}

运行结果:

运行结果充分展示了AtomicInteger的ABA问题和AtomicStampedReference解决ABA问题。

时间: 2024-08-09 23:50:13

【死磕Java并发】----深入分析CAS的相关文章

【死磕Java并发】-----J.U.C之读写锁:ReentrantReadWriteLock

此篇博客所有源码均来自JDK 1.8 重入锁ReentrantLock是排他锁,排他锁在同一时刻仅有一个线程可以进行访问,但是在大多数场景下,大部分时间都是提供读服务,而写服务占有的时间较少.然而读服务不存在数据竞争问题,如果一个线程在读时禁止其他线程读势必会导致性能降低.所以就提供了读写锁. 读写锁维护着一对锁,一个读锁和一个写锁.通过分离读锁和写锁,使得并发性比一般的排他锁有了较大的提升:在同一时间可以允许多个读线程同时访问,但是在写线程访问时,所有读线程和写线程都会被阻塞. 读写锁的主要特

【死磕Java并发】-----J.U.C之重入锁:ReentrantLock

此篇博客所有源码均来自JDK 1.8 ReentrantLock,可重入锁,是一种递归无阻塞的同步机制.它可以等同于synchronized的使用,但是ReentrantLock提供了比synchronized更强大.灵活的锁机制,可以减少死锁发生的概率. API介绍如下: 一个可重入的互斥锁定 Lock,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁定相同的一些基本行为和语义,但功能更强大.ReentrantLock 将由最近成功获得锁定,并且还没有释放该锁定的线程所拥

【死磕Java并发】-----Java内存模型之分析volatile

前篇博客[死磕Java并发]-–深入分析volatile的实现原理 中已经阐述了volatile的特性了: volatile可见性:对一个volatile的读,总可以看到对这个变量最终的写: volatile原子性:volatile对单个读/写具有原子性(32位Long.Double),但是复合操作除外,例如i++; JVM底层采用"内存屏障"来实现volatile语义 下面LZ就通过happens-before原则和volatile的内存语义两个方向介绍volatile. volat

【死磕Java并发】-----J.U.C之AQS:CLH同步队列

此篇博客所有源码均来自JDK 1.8 在上篇博客[死磕Java并发]-–J.U.C之AQS:AQS简介中提到了AQS内部维护着一个FIFO队列,该队列就是CLH同步队列. CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态. 在CLH同步队列中,一个节点表示一个线程

【死磕Java并发】-----深入分析volatile的实现原理

通过前面一章我们了解了synchronized是一个重量级的锁,虽然JVM对它做了很多优化,而下面介绍的volatile则是轻量级的synchronized.如果一个变量使用volatile,则它比使用synchronized的成本更加低,因为它不会引起线程上下文的切换和调度.Java语言规范对volatile的定义如下: Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致地更新,线程应该确保通过排他锁单独获得这个变量. 上面比较绕口,通俗点讲就是说一个变量如果用volatil

【死磕Java并发】-----J.U.C之AQS:阻塞和唤醒线程

此篇博客所有源码均来自JDK 1.8 在线程获取同步状态时如果获取失败,则加入CLH同步队列,通过通过自旋的方式不断获取同步状态,但是在自旋的过程中则需要判断当前线程是否需要阻塞,其主要方法在acquireQueued(): if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; 通过这段代码我们可以看到,在获取同步状态失败后,线程并不是立马进行阻塞,需要检查该线程的

【死磕Java并发】—–J.U.C之AQS(一篇就够了)

[隐藏目录] 1 独占式 1.1 独占式同步状态获取 1.2 独占式获取响应中断 1.3 独占式超时获取 1.4 独占式同步状态释放 2 共享式 2.1 共享式同步状态获取 2.2 共享式同步状态释放 3 参考资料 此篇博客所有源码均来自JDK 1.8 在前面提到过,AQS是构建Java同步组件的基础,我们期待它能够成为实现大部分同步需求的基础.AQS的设计模式采用的模板方法模式,子类通过继承的方式,实现它的抽象方法来管理同步状态,对于子类而言它并没有太多的活要做,AQS提供了大量的模板方法来实

【死磕Java并发】-----J.U.C之Condition

此篇博客所有源码均来自JDK 1.8 在没有Lock之前,我们使用synchronized来控制同步,配合Object的wait().notify()系列方法可以实现等待/通知模式.在Java SE5后,Java提供了Lock接口,相对于Synchronized而言,Lock提供了条件Condition,对线程的等待.唤醒操作更加详细和灵活.下图是Condition与Object的监视器方法的对比(摘自<Java并发编程的艺术>): Condition提供了一系列的方法来对阻塞和唤醒线程: a

死磕Java并发-----J.U.C之Java并发容器:ConcurrentHashMap

HashMap是我们用得非常频繁的一个集合,但是由于它是非线程安全的,在多线程环境下,put操作是有可能产生死循环的,导致CPU利用率接近100%.为了解决该问题,提供了Hashtable和Collections.synchronizedMap(hashMap)两种解决方案,但是这两种方案都是对读写加锁,独占式,一个线程在读时其他线程必须等待,吞吐量较低,性能较为低下.故而Doug Lea大神给我们提供了高性能的线程安全HashMap:ConcurrentHashMap. ConcurrentH