先上题目:
Binary Search Heap Construction
Time Limit: 5 Seconds Memory Limit: 32768 KB
Read the statement of problem G for the definitions concerning trees. In the following we define the basic terminology of heaps. A heap is a tree whose internal nodes have each assigned a priority (a number) such that the priority of each internal node is less than the priority of its parent. As a consequence, the root has the greatest priority in the tree, which is one of the reasons why heaps can be used for the implementation of priority queues and for sorting.
A binary tree in which each internal node has both a label and a priority, and which is both a binary search tree with respect to the labels and a heap with respect to the priorities, is called a treap. Your task is, given a set of label-priority-pairs, with unique labels and unique priorities, to construct a treap containing this data.
Input Specification
The input contains several test cases. Every test case starts with an integer n. You may assume that 1<=n<=50000. Then follow n pairs of strings and numbers l1/p1,...,ln/pndenoting the label and priority of each node. The strings are non-empty and composed of lower-case letters, and the numbers are non-negative integers. The last test case is followed by a zero.
Output Specification
For each test case output on a single line a treap that contains the specified nodes. A treap is printed as (<left sub-treap><label>/<priority><right sub-treap>). The sub-treaps are printed recursively, and omitted if leafs.
Sample Input
7 a/7 b/6 c/5 d/4 e/3 f/2 g/1 7 a/1 b/2 c/3 d/4 e/5 f/6 g/7 7 a/3 b/6 c/4 d/7 e/2 f/5 g/1 0
Sample Output
(a/7(b/6(c/5(d/4(e/3(f/2(g/1))))))) (((((((a/1)b/2)c/3)d/4)e/5)f/6)g/7) (((a/3)b/6(c/4))d/7((e/2)f/5(g/1))) 题意:好像就是叫你求Treap树。给出字符串和优先值,要求建一棵二叉树,根据字符串排序,然后父亲的优先值要比儿子大。然后先序遍历输出这个Treap树。 最水的方法就是直接先按优先值排序,然后逐个逐个元素添加。但是这样做绝对超时。 可以通过的第一种方法:首先先按字符串大小排个序,然后从小到大扫描一次,求出每个元素左边优先值比它大的最近的元素的位置在哪。同理从大到小扫描,求出每个元素右边优先值比它大的最近的元素的位置在哪。(没错,就是单调栈),然后在每个扫描到的最近位置加一个对应的括号(左括号或者右括号)就是答案了。总的时间复杂度O(nlogn)。 第二种方法是用RMQ求出区间优先值的最大值的下标,然后每次找出区间最大值作为根构造两边的子树就可以了。总的时间复杂度也是O(nlogn)。 比赛的时候用的方法是第二种,但是当时求对数的时候底数不是2,所以提交一直都是段错误。 上代码:
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #define MAX 50002 5 #define INF 0x3f3f3f3f 6 using namespace std; 7 8 typedef struct node{ 9 char l[200]; 10 int p; 11 12 bool operator < (const node& o)const{ 13 return strcmp(l,o.l)<0; 14 } 15 }node; 16 17 int n; 18 node e[MAX]; 19 char ch[MAX]; 20 int l[MAX],r[MAX]; 21 int al[MAX],ar[MAX]; 22 23 inline void put(char c,int ti){ 24 for(int i=0;i<ti;i++) putchar(c); 25 } 26 27 int main() 28 { 29 char* sp; 30 //freopen("data.txt","r",stdin); 31 while(scanf("%d",&n),n){ 32 for(int i=1;i<=n;i++){ 33 scanf("%s",ch); 34 sp=strchr(ch,‘/‘); 35 *sp=‘\0‘; 36 sp++; 37 strcpy(e[i].l,ch); 38 sscanf(sp,"%d",&e[i].p); 39 l[i]=r[i]=i; 40 al[i]=ar[i]=0; 41 } 42 sort(e+1,e+n+1); 43 e[0].p=e[n+1].p=INF; 44 for(int i=1;i<=n;i++){ 45 while(e[i].p>=e[l[i]-1].p) l[i]=l[l[i]-1]; 46 al[l[i]]++; 47 } 48 for(int i=n;i>0;i--){ 49 while(e[i].p>=e[r[i]+1].p) r[i]=r[r[i]+1]; 50 ar[r[i]]++; 51 } 52 for(int i=1;i<=n;i++){ 53 put(‘(‘,al[i]); 54 printf("%s/%d",e[i].l,e[i].p); 55 put(‘)‘,ar[i]); 56 } 57 printf("\n"); 58 } 59 return 0; 60 }
/*单调栈*/
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <string> 5 #include <cmath> 6 #define MAX 60002 7 #define ll long long 8 using namespace std; 9 10 typedef struct node{ 11 string l; 12 ll p; 13 14 bool operator <(const node& o)const{ 15 if(l<o.l) return 1; 16 return 0; 17 } 18 }node; 19 20 int n; 21 node e[MAX]; 22 char ss[MAX]; 23 int dp[MAX][20]; 24 25 void solve(){ 26 int i,j,l,r; 27 for(i=0;i<n;i++) dp[i][0]=i; 28 for(j=1;(1<<j)<=n;j++){ 29 for(i=0;i+(1<<j)-1<n;i++){ 30 l=dp[i][j-1]; r=dp[i+(1<<(j-1))][j-1]; 31 if(e[l].p>e[r].p) dp[i][j]=l; 32 else dp[i][j]=r; 33 } 34 } 35 } 36 37 int rmq(int a,int b){ 38 int k; 39 k=log(b-a+1.0)/log(2.0); 40 return (e[dp[a][k]].p>e[dp[b-(1<<k)+1][k]].p ? dp[a][k] : dp[b-(1<<k)+1][k]); 41 } 42 43 void print(int r,int L,int R){ 44 int ne; 45 putchar(‘(‘); 46 if(r-L>0){ 47 ne=rmq(L,r-1); 48 print(ne,L,r-1); 49 } 50 for(unsigned int i=0;i<e[r].l.size();i++) putchar(e[r].l[i]); 51 printf("/%lld",e[r].p); 52 if(R-r>0){ 53 ne=rmq(r+1,R); 54 print(ne,r+1,R); 55 } 56 putchar(‘)‘); 57 } 58 59 int main() 60 { 61 int li; 62 char* st; 63 //freopen("data.txt","r",stdin); 64 while(scanf("%d",&n),n!=0){ 65 for(int i=0;i<n;i++){ 66 getchar(); 67 scanf("%s",ss); 68 st=strchr(ss,‘/‘); 69 *st=‘\0‘; 70 st++; 71 e[i].l=string(ss); 72 sscanf(st,"%lld",&e[i].p); 73 } 74 sort(e,e+n); 75 solve(); 76 li=0; 77 for(int i=1;i<n;i++){ 78 if(e[li].p<e[i].p) li=i; 79 } 80 print(li,0,n-1); 81 printf("\n"); 82 } 83 return 0; 84 }
/*RMQ*/
ZOJ - 2243 - Binary Search Heap Construction,布布扣,bubuko.com