【百度之星2014~初赛(第二轮)解题报告】Chess

声明


笔者最近意外的发现 笔者的个人网站http://tiankonguse.com/ 的很多文章被其它网站转载,但是转载时未声明文章来源或参考自 http://tiankonguse.com/ 网站,因此,笔者添加此条声明。

郑重声明:这篇记录《【百度之星2014~初赛(第二轮)解题报告】Chess》转载自 http://tiankonguse.com/ 的这条记录:http://tiankonguse.com/record/record.php?id=667

前言

最近要毕业了,有半年没做比赛了.
这次参加百度之星娱乐一下.
现在写一下 Chess 这道题的的解题报告.

正文

题意


题意很简单,告诉你一个矩阵,以及一个起始坐标.

问走k步有多少个不同的路线.

一个路线可以记为上下左右,则k步有k个上下左右,比如 "上上左左下下" 是一个路线.

分析


矩阵的大小是1000*1000, k = 1000, 如果使用搜索肯定不行.

起始很容易往矩阵幂这个方向上想,但是状态太多了, 1000*1000 个状态,行不通.

当时我也考虑分行和列来做,但是就差那么一步就不向下想了.

网上找了一个解题报告,这个解题报告的分析很简单,只有一句话:可以很容易发现行和列是独立的。

好吧!看到这句话我瞬间会做这道题了.

接下来我就具体写写推算公式给大家.

如果是暴力的话,答案应该是

ans = sum( Count(i, j, k) );

其中 Count(i, j, k) 代表 从(x, y) 走 k 步到 坐标(i, j)
的路径个数.

对于 Count(i, j, k) 我们怎么求出来呢?

假设从(x, y) 走 k 步到 坐标(i, j)时, 我们有 t 步是上下移动的, k - t 步是左右移动的,也就是 k 步中有 t
步是上下移动的,及 C(k, t) 吧.

于是我们可以得带这个公式了.

Count(i, j, k) = sum(C(k, t) * Count(i, t) * Count(j, k- t) )

其中 C(k, t) 是组合数

Count(i, t) 代表从数轴x 只上下移动走 t 步到达 数轴 i 的路线数,当然,由于是上下,有个上界n,最大行数.

对应这 Count(j, k-t ) 代表从数轴 y 只左右移动走 k - t 步 到达 j 的路线数, 上界是 m, 最大列数.

我们把这个公式带入暴力公式可以得到

ans = sum( C(k, t) * Count(i, t) * Count(j, k- t)  )

其中 0<=t<=k, 1<=i<=n, 1<=j<=m.

然后我们把 i 展开可以得到

ans = sum(
C(k, t) * Count(1, t) * Count(j, k- t)
+C(k, t) * Count(2, t) * Count(j, k- t)
+ ...
+C(k, t) * Count(n, t) * Count(j, k- t)
)

再提取公因式,可以得到

ans = sum( C(k, t) * Count(j, k - t) * sum(Count(i, t)) )

同理,可以把 j 展开

ans = sum(
C(k, t) * Count(1, k - t) * sum(Count(i, t))
+C(k, t) * Count(2, k - t) * sum(Count(i, t))
+...
+C(k, t) * Count(m, k - t) * sum(Count(i, t))
)

这个也可以提取公因式

ans = sum(C(k, t) * sum( Count(j, k-t ) ) * sum( Count( i, t ) ))

我们可以看到,对于 C(k, t) 是组合数,可以预处理得到.

对于 Count(i, t) 和 Count(j, k-t ) 我们都可以使用 O(n^2) 的预处理得到.

然后我们再使用O(n) 的预处理可以得到 sum( Count(j, k-t) ) 和 sum( Count(i, t) ).

最后我们使用 O( k ) 的复杂度得到它们的乘积即可.

代码

/*************************************************************************
> File Name: 2.2.cpp
> Author: tiankonguse
> Mail: [email protected]
> Created Time: Mon 26 May 2014 11:31:15 AM CST
***********************************************************************/
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<stack>
#include<algorithm>
#include<functional>
#include<stdarg.h>
using namespace std;
#ifdef __int64
typedef __int64 LL;
#else
typedef long long LL;
#endif
const int N = 1111;
int map[4]= {-2,-1,1,2};
LL C[N][N];
LL mod = 9999991;
LL str[2][N][N], sum[2][N];

void getC() {
memset(C,0,sizeof(C));
C[0][0] = 1;
for(int i = 1; i < N; i++) {
C[i][0] = C[i][i] = 1;
for(int j = 1; j < i; j++) {
C[i][j] =( C[i-1][j] + C[i-1][j-1]) % mod;
}
}
}

void DP(LL str[N][N], LL sum[N], int x, int n, int k) {
str[0][x] = 1;
sum[0] = 1;
for(int t=1; t<=k; t++) {
for(int i=2; i<=n; i++) {
for(int kk=0; kk<4; kk++) {
str[t][i] = (str[t][i] + str[t-1][i+map[kk]]) % mod;
}
sum[t] = (sum[t] + str[t][i]) % mod;
}
}
}

LL get(int k, int i) {
return ((C[k][i] * sum[0][i] % mod) * sum[1][k-i] % mod);
}

int main() {
getC();
int t,n,m,k,x,y;
LL ans;
scanf("%d",&t);
for(int tt=1; tt<=t; tt++) {
scanf("%d%d%d%d%d",&n,&m,&k,&x,&y);
n++,m++,x++,y++;
memset(str,0,sizeof(str));
memset(sum,0,sizeof(sum));
DP(str[0], sum[0], x, n, k);
DP(str[1], sum[1], y, m, k);

ans = 0;
for(int i = 0; i <= k; i++) {
ans = (ans + get(k, i))%mod;
}
printf("Case #%d:\n%lld\n",tt,ans);
}

return 0;
}

参考


http://acm.hdu.edu.cn/showproblem.php?pid=4832

http://www.cnblogs.com/kuangbin/p/3751404.html

【百度之星2014~初赛(第二轮)解题报告】Chess,布布扣,bubuko.com

时间: 2024-12-26 16:02:09

【百度之星2014~初赛(第二轮)解题报告】Chess的相关文章

百度之星2014初赛第二场

A. Scenic Popularity http://acm.hdu.edu.cn/showproblem.php?pid=4831 思路:景点区会控制休息区的Hot值,我们建立休息区到它最近的景点区的关系,注意处理冲突. 查询和修改都暴力进行,预处理关系,从左到右,然后从右到左遍历一遍即可,更新时候,从被修改的p位置,向两边,与p有关的休息区进行更新.总的时间复杂度O(T*n*K),10^8左右,不到1s可以解决. const int maxn = 10000; const int maxh

【百度之星2014~初赛(第二轮)解题报告】JZP Set

声明 笔者最近意外的发现 笔者的个人网站http://tiankonguse.com/ 的很多文章被其它网站转载,但是转载时未声明文章来源或参考自 http://tiankonguse.com/ 网站,因此,笔者添加此条声明. 郑重声明:这篇记录<[百度之星2014~初赛(第二轮)解题报告]JZP Set>转载自 http://tiankonguse.com/ 的这条记录:http://tiankonguse.com/record/record.php?id=668 前言 最近要毕业了,有半年

【百度之星2014~初赛解题报告】

声明 笔者最近意外的发现 笔者的个人网站http://tiankonguse.com/ 的很多文章被其它网站转载,但是转载时未声明文章来源或参考自 http://tiankonguse.com/ 网站,因此,笔者添加此条声明. 郑重声明:这篇记录<[百度之星2014~初赛解题报告]>转载自 http://tiankonguse.com/ 的这条记录:http://tiankonguse.com/record/record.php?id=671 前言 最近要毕业了,有半年没做比赛了.这次参加百度

模拟-hdoj-4831-百度之星2014初赛第二场

Scenic Popularity Problem Description 临近节日,度度熊们最近计划到室外游玩公园,公园内部包括了很多的旅游景点区和休息区,由于旅游景点很热门,导致景点区和休息区都聚集了很多人.所以度度熊在旅游之前想通过百度地图查看一下公园内各个地方的热门程度. 假设所有景点区和休息区都是X轴直线上的一系列顶点,所对应的坐标Xi 保证唯一.每个景点区有个初始的热度值,而一个休息区(坐标为Xi)的热度值等于离它距离最近的景点区Xj的热度值(距离定义为|Xi-Xj|),如果此休息区

百度之星2014初赛 - 1002 - Grids

先上题目: Grids Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 0    Accepted Submission(s): 0 Problem Description 度度熊最近很喜欢玩游戏.这一天他在纸上画了一个2行N列的长方形格子.他想把1到2N这些数依次放进去,但是为了使格子看起来优美,他想找到使每行每列都递增的方案.不过画

动态规划-hdoj-4832-百度之星2014初赛第二场

Chess Problem Description 小度和小良近期又迷上了下棋.棋盘一共同拥有N行M列,我们能够把左上角的格子定为(1,1),右下角的格子定为(N,M).在他们的规则中,"王"在棋盘上的走法遵循十字路线.也就是说,假设"王"当前在(x,y)点,小度在下一步能够移动到(x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+2, y), (x-2, y), (x, y+2), (x, y-2) 这八个点中的随意一个. 小度觉

【百度之星2014~资格赛解题报告】

声明 笔者最近意外的发现 笔者的个人网站http://tiankonguse.com/ 的很多文章被其它网站转载,但是转载时未声明文章来源或参考自 http://tiankonguse.com/ 网站,因此,笔者添加此条声明. 郑重声明:这篇记录<标题>转载自 http://tiankonguse.com/ 的这条记录:http://tiankonguse.com/record/record.php?id=666 前言 最近要毕业了,有半年没做比赛了.这次参加百度之星娱乐一下.现在写一下解题报

【百度之星2014~复赛)解题报告】The Query on the Tree

声明 笔者最近意外的发现 笔者的个人网站http://tiankonguse.com/ 的很多文章被其它网站转载,但是转载时未声明文章来源或参考自 http://tiankonguse.com/ 网站,因此,笔者添加此条声明. 郑重声明:这篇记录<[百度之星2014~复赛)解题报告]The Query on the Tree>转载自 http://tiankonguse.com/ 的这条记录:http://tiankonguse.com/record/record.php?id=673 前言

【百度之星2014~复赛 解题报告~正解】The Query on the Tree

声明 笔者近期意外的发现 笔者的个人站点http://tiankonguse.com/ 的非常多文章被其他站点转载.可是转载时未声明文章来源或參考自 http://tiankonguse.com/ 站点,因此.笔者加入此条声明. 郑重声明:这篇记录<[百度之星2014~复赛 解题报告~正解]The Query on the Tree>转载自 http://tiankonguse.com/的这条记录:http://tiankonguse.com/record/record.php?id=674