本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示:
输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出
第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征。然后进行maxpooling。第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征。然后进行max pooling。卷积核的个数是我们自己设定,可以增加卷积核数目提高分类精度,但是那样会增加更大参数,提高计算成本。
这样输入是分辨率为28*28的图片。利用5*5的patch进行卷积。我们的卷积使用1步长(stride size),0填充模块(zero padded),这样得到的输出和输入是同一个大小。经过第一层卷积之后,卷积特征大小为28*28。然后通过ReLU函数激活。我们的pooling用简单传统的2x2大小的模板做max pooling,这样pooling后得到14*14大小的特征。经过第二层卷积后,卷积特征大小为14*14,然后通过ReLU函数激活,再经过pooling后得到特征大小为7*7。
现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量展开成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。
为了避免过拟合,在全连接层输出接上dropout层。Dropout层在训练时屏蔽一半的神经元。
1、输入数据
直接使用tensorflow中的模块,导入输入数据:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(‘MNIST_data‘, one_hot=True)
或者使用官方提供的input_data.py文件下载mnist数据
2、启动session
(1)交互方式启动session
sess = tf.InteractiveSession()
(2)一般方式启动session
sess = tf.Session()
ps: 使用交互方式不用提前构建计算图,而使用一般方式必须提前构建好计算图才能启动session
3、权重和偏置初始化
权重初始化的原则:应该加入少量的噪声来打破对称性并且要避免0梯度(初始化为0)
权重初始化一般选择均匀分布或是正态分布
定义权重初始化方法:
def weight_variable(shape):
#截尾正态分布,stddev是正态分布的标准偏差
initial = tf.truncated_normal(shape=shape, stddev=0.1)
return tf.Variable(initial)
定义偏置初始化方法:
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
4、定义卷积和池化方法
TensorFlow在卷积和Pooling上有很强的灵活性。我们怎么处理边界?步长应该设多大?在这个实例里,我们的卷积使用1步长(stride size),0填充模块(zero padded),保证输出和输入是同一个大小。我们的pooling用简单传统的2x2大小的模板做maxpooling。为了代码更简洁,我们把这部分抽象成一个函数。
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=‘SAME‘)
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘SAME‘)
5、直接贴完整代码
from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tf#加载数据集mnist = input_data.read_data_sets(‘MNIST_data‘, one_hot=True) #以交互式方式启动session#如果不使用交互式session,则在启动session前必须# 构建整个计算图,才能启动该计算图sess = tf.InteractiveSession() """构建计算图"""#通过占位符来为输入图像和目标输出类别创建节点#shape参数是可选的,有了它tensorflow可以自动捕获维度不一致导致的错误x = tf.placeholder("float", shape=[None, 784]) #原始输入y_ = tf.placeholder("float", shape=[None, 10]) #目标值 #为了不在建立模型的时候反复做初始化操作,# 我们定义两个函数用于初始化def weight_variable(shape): #截尾正态分布,stddev是正态分布的标准偏差 initial = tf.truncated_normal(shape=shape, stddev=0.1) return tf.Variable(initial)def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #卷积核池化,步长为1,0边距def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=‘SAME‘)def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘SAME‘) """第一层卷积"""#由一个卷积和一个最大池化组成。滤波器5x5中算出32个特征,是因为使用32个滤波器进行卷积#卷积的权重张量形状是[5, 5, 1, 32],1是输入通道的个数,32是输出通道个数W_conv1 = weight_variable([5, 5, 1, 32])#每一个输出通道都有一个偏置量b_conv1 = bias_variable([32]) #位了使用卷积,必须将输入转换成4维向量,2、3维表示图片的宽、高#最后一维表示图片的颜色通道(因为是灰度图像所以通道数维1,RGB图像通道数为3)x_image = tf.reshape(x, [-1, 28, 28, 1]) #第一层的卷积结果,使用Relu作为激活函数h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1))#第一层卷积后的池化结果h_pool1 = max_pool_2x2(h_conv1) """第二层卷积"""W_conv2 = weight_variable([5, 5, 32, 64])b_conv2 = bias_variable([64])h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)h_pool2 = max_pool_2x2(h_conv2) """全连接层"""#图片尺寸减小到7*7,加入一个有1024个神经元的全连接层W_fc1 = weight_variable([7*7*64, 1024])b_fc1 = bias_variable([1024])#将最后的池化层输出张量reshape成一维向量h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])#全连接层的输出h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) """使用Dropout减少过拟合"""#使用placeholder占位符来表示神经元的输出在dropout中保持不变的概率#在训练的过程中启用dropout,在测试过程中关闭dropoutkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) """输出层"""W_fc2 = weight_variable([1024, 10])b_fc2 = bias_variable([10])#模型预测输出y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #交叉熵损失cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #模型训练,使用AdamOptimizer来做梯度最速下降train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #正确预测,得到True或False的Listcorrect_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1))#将布尔值转化成浮点数,取平均值作为精确度accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #在session中先初始化变量才能在session中调用sess.run(tf.initialize_all_variables()) #迭代优化模型for i in range(20000): #每次取50个样本进行训练 batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_:batch[1], keep_prob:1.0}) #模型中间不使用dropout print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5})print("test accuracy %g" % accuracy.eval(feed_dict={ x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))6、input_data.py文件 注:python3中没有xrange,其range与python2中的xrange作用相同
#!/urs/bin/env python# -*- coding:utf-8 -*-# Copyright 2015 Google Inc. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""Functions for downloading and reading MNIST data."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport gzipimport osimport tensorflow.python.platformimport numpyimport urllibimport tensorflow as tf SOURCE_URL = ‘http://yann.lecun.com/exdb/mnist/‘ def maybe_download(filename, work_directory): """Download the data from Yann‘s website, unless it‘s already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print(‘Successfully downloaded‘, filename, statinfo.st_size, ‘bytes.‘) return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder(‘>‘) return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print(‘Extracting‘, filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( ‘Invalid magic number %d in MNIST image file: %s‘ % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print(‘Extracting‘, filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( ‘Invalid magic number %d in MNIST label file: %s‘ % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=tf.float32): """Construct a DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. """ dtype = tf.as_dtype(dtype).base_dtype if dtype not in (tf.uint8, tf.float32): raise TypeError(‘Invalid image dtype %r, expected uint8 or float32‘ % dtype) if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( ‘images.shape: %s labels.shape: %s‘ % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) if dtype == tf.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in range(batch_size)], [ fake_label for _ in range(batch_size)] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end]def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): class DataSets(object): pass data_sets = DataSets() if fake_data: def fake(): return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) data_sets.train = fake() data_sets.validation = fake() data_sets.test = fake() return data_sets TRAIN_IMAGES = ‘train-images-idx3-ubyte.gz‘ TRAIN_LABELS = ‘train-labels-idx1-ubyte.gz‘ TEST_IMAGES = ‘t10k-images-idx3-ubyte.gz‘ TEST_LABELS = ‘t10k-labels-idx1-ubyte.gz‘ VALIDATION_SIZE = 5000 local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels, dtype=dtype) data_sets.validation = DataSet(validation_images, validation_labels, dtype=dtype) data_sets.test = DataSet(test_images, test_labels, dtype=dtype) return data_sets