算法分析

  算法就是一系列解决问题的指令,对于给定的输入,能够在有限时间内获得预期的输出。一个好的算法和一篇好的文章一样,都是不断努力,反复修正的结果。算法分析主要从运行时间和存储空间两方面讨论算法的效率。相信有些人会有跟我一样的感觉,对于一些算法,有时我们一眼就能看出它的时间复杂度,但就是无法比较规范的表达出来。本文就系统的整理一下如何规范推导算法的时间和空间复杂度。

  算法分析的一个依据是,输入规模(又称问题规模,记为 n),根据直觉,程序的运行时间随着问题规模的增大而变长。那么怎么衡量程序的运行时间呢?其实程序大部分时间只花在某些重要的操作(指令)上,比如大部分排序基本操作就是比较交换,所以另一个依据就是,程序基本操作执行的次数。如果把基本操作的次数记为 f(n) ,每次执行的时间为  Cop 那么可以用以下公式估算运行时间 :

  假设 f(n)=n(n-1)/2,那么如果输入规模翻倍,算法大约运行 4 倍的时间,这是因为当 n 值很大时,就有:

  那么:

  所以对于大规模的输入,我们忽略了一些常量,而更加关注程序运行时间的增长速度,也可以称为相对增长率。为了更方便的描述 T(n) 的增长数量级,使用”大O”来表示增长数量级的上限(也可以说是算法性能的渐进上限),其数学定义是:对于T(n)和f(n),如果存在常数 C 和 n0 使得当n≥n0时,都有 0≤T(n)≤C×f(n),则记为T(n)=O(f(n))。此外还有”大Ω”用来表示最坏情况下的性能下限;”大θ”用来描述算法的最优性能。

时间: 2024-10-13 11:47:29

算法分析的相关文章

算法分析的正确姿势

[本系列博文会对常见的数据结构及相应算法进行分析与总结,并会在每篇博文中提供几道相关的一线互联网企业面试/笔试题来巩固所学及帮助我们查漏补缺.项目地址:https://github.com/absfree/Algo.由于个人水平有限,叙述中难免存在不清晰准确的地方,希望大家可以指正,谢谢大家:)] 一.前言 在进一步学习数据结构与算法前,我们应该先掌握算法分析的一般方法.算法分析主要包括对算法的时空复杂度进行分析,但有些时候我们更关心算法的实际运行性能如何,此外,算法可视化是一项帮助我们理解算法

算法分析与设计复习

算法分析与设计复习 2016年初,研一上学期期末考试前,复习并总结算法分析与设计科目的内容.复习过程参照<算法导论>中文第2版,同时参照PPT,章节划分根据PPT内容 概要: 第一章 概述 第二章 插入排序&分治策略 第三章 复杂度分析 第四章 堆与堆排序 第五章 快速排序 第六章 线性时间排序 第一章 概述 算法的应用范围 算法在诸如生物等诸多领域有其应用 算法的意义 算法在很多情况下让不可能完成的事情变成了可能,让处理的很慢的过程变快. 一个铺垫 一串不全为0的数,怎么取能拿到一段

拓扑排序之变量序列算法分析

拓扑排序之变量序列 巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 题目描述: 假设有n个变量(1<=n<=26,变量名用单个小写字母表示),还有m个二元组(u,v),分别表示变量u小于v.那么,所有变量从小到大排列起来应该是什么样子的呢? 例如有4个变量a,b,c,d,若以知a<b,c<b,d<c,则这4个变量的排序可能是a<d<c<b.尽管还有可能其他的可能,你只需找出其中的一个即可. 输入: 输入为一

某某水表-M1卡数据算法分析

# 某某水表-M1卡数据算法分析 ## 卡片数据-----------------------------扇区数据 | 金额:--- |:---13EC 0000 0000 0000 0000 0000 03EB BD1B | 51.0013E7 0000 0000 0000 0000 0000 03F0 AD2B | 50.9513E2 0000 0000 0000 0000 0000 03F5 AD2B | 50.8513DD 0000 0000 0000 0000 0000 03FA 9D

[MD5变形算法练习] AutoRun Design Specialty算法分析

[破文标题][MD5变形算法练习] AutoRun Design Specialty算法分析[破文作者]静心学习[作者邮箱][email protected][作者主页]http://www.cnblogs.com/dacainiao/[破解工具]OD, DEDE, IDA[破解平台]xp sp3[软件名称]AutoRun Design Specialty[软件大小]6.98MB[原版下载]http://www.alleysoft.com/autorundesignspecialty/ARDSS

数据结构与算法分析绪论

数据结构+算法=程序 逻辑结构:集合.线性.树.图 物理结构:顺序.链式 算法分析: (渐进)时间复杂度: 基本语句的执行次数(基本语句:执行次数与整个算法执行次数成正比的语句,通常是最内层循环的循环体) 非递归:找执行次数最大的基本语句放入大O: 递归:(迭代法)可迭代的展开方程的右边,直到没有可以迭代的项为止,这时通过对右边的和进行估算来估计方程的解http://www.cnblogs.com/python27/archive/2011/12/09/2282486.html 最好情况.最坏情

数据结构1:数据结构和算法分析

问题引出 假设有一道题目:有一组N个数而要确定其中第k个最大者,我们称之为选择问题,那么这个程序如何编写?最直观地,至少有两种思路: 1.将N个数读入一个数组中,再通过某种简单的算法,比如冒泡排序法,以递减顺序将数组排序,则第k个位置上的元素就是我们需要的元素 2.稍微好一些的做法,将k个元素读入数组并以递减顺序排序,接着将接下来的元素再逐个读入,当新元素被读到时,如果它小于数组中的第k个元素则忽略之,否则将其放到数组中正确的位置上,同时将数组中的一个元素挤出数组,当算法终止时,位于第k个位置上

数据结构与算法:算法分析

目录 实验研究 常用函数 渐近分析  一.实验研究(Experimental studies) 1.运行时间测量 时钟时间 time.time() CPU时间 time.clock() 基准时间 timeit.timeit() 在执行算法的时候,我们可以通过改变输入规模的大小和记录花费的时间来研究运行时间. 在python中使用time模块的time函数来记录算法的运行时间: from time import time start_time=time() run algorithm end_ti

数据结构基本概念及算法和算法分析 -- 引自《新编数据结构习题与解析》(李春葆等著)

本文引自<新编数据结构习题与解析>(李春葆等著)第1章. 1. 数据结构的基本概念 1.1 数据 数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称.例如,整数.实数和字符串都是数据. 1.2 数据元素 数据元素也称为节点,是表示数据的基本单元,在计算机程序中通常作为一个整体进行考虑和处理. 1.3 数据项 数据项是数据的最小单位.数据元素可以由若干个数据项组成.例如,学生记录就是一个数据元素,它由学号.姓名.性别等数据项组成. 1.4 数据对象