java 的HashMap底层数据结构

HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。下面就来分析HashMap的存取。

一、定义

HashMap实现了Map接口,继承AbstractMap。其中Map接口定义了键映射到值的规则,而AbstractMap类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实AbstractMap类已经实现了Map,这里标注Map LZ觉得应该是更加清晰吧!

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
{

    /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * An empty table instance to share when the table is not inflated.
     */
    static final Entry<?,?>[] EMPTY_TABLE = {};

    /**
     * The table, resized as necessary. Length MUST Always be a power of two.
     */
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The next size value at which to resize (capacity * load factor).
     * @serial
     */
    // If table == EMPTY_TABLE then this is the initial capacity at which the
    // table will be created when inflated.
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The default threshold of map capacity above which alternative hashing is
     * used for String keys. Alternative hashing reduces the incidence of
     * collisions due to weak hash code calculation for String keys.
     * <p/>
     * This value may be overridden by defining the system property
     * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
     * forces alternative hashing to be used at all times whereas
     * {@code -1} value ensures that alternative hashing is never used.
     */
    static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
}

二、构造函数

HashMap提供了三个构造函数:

HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。

在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。

HashMap是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。

三、数据结构

我们知道在Java中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它数据结构:

从上图我们可以看出HashMap底层实现还是数组,只是数组的每一项都是一条链。其中参数initialCapacity就代表了该数组的长度。下面为HashMap构造函数的源码:

 public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        init();
    }

从源码中可以看出,每次新建一个HashMap时,都会初始化一个table数组。table数组的元素为Entry节点。

static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        int hash;
}

其中Entry为HashMap的内部类,它包含了键key、值value、下一个节点next,以及hash值,这是非常重要的,正是由于Entry才构成了table数组的项为链表。

上面简单分析了HashMap的数据结构,下面将探讨HashMap是如何实现快速存取的。

四、存储实现:put(key,vlaue)

首先我们先看源码


public V put(K key, V value) {
        //当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因
        if (key == null)
            return putForNullKey(value);
        //计算key的hash值
        int hash = hash(key.hashCode());                  ------(1)
        //计算key hash 值在 table 数组中的位置
        int i = indexFor(hash, table.length);             ------(2)
        //从i出开始迭代 e,找到 key 保存的位置
        for (Entry<K, V> e = table[i]; e != null; e = e.next) {
            Object k;
            //判断该条链上是否有hash值相同的(key相同)
            //若存在相同,则直接覆盖value,返回旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;    //旧值 = 新值
                e.value = value;
                e.recordAccess(this);
                return oldValue;     //返回旧值
            }
        }
        //修改次数增加1
        modCount++;
        //将key、value添加至i位置处
        addEntry(hash, key, value, i);
        return null;
    }
 

通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,否则将该元素保存在链头(最先保存的元素放在链尾)。若table在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:

1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。

2、 在看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。

final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // This function ensures that hashCodes that differ only by
        // constant multiples at each bit position have a bounded
        // number of collisions (approximately 8 at default load factor).
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。

我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。

这里我们假设length为16(2^n)和15,h为5、6、7。

当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。

从上面的图表中我们看到总共发生了8此碰撞,同时发现浪费的空间非常大,有1、3、5、7、9、11、13、15处没有记录,也就是没有存放数据。这是因为他们在与14进行&运算时,得到的结果最后一位永远都是0,即0001、0011、0101、0111、1001、1011、1101、1111位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。而当length = 16时,length – 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。

这里我们再来复习put的流程:当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:

 void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }

这个方法中有两点需要注意:

      一是链的产生。这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。

      二、扩容问题。

随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

五、读取实现:get(key)

相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。

public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
    }

final Entry<K,V> getEntry(Object key) {


if (size == 0) {


return null;


}



int hash = (key == null) ? 0 : hash(key);


for (Entry<K,V> e = table[indexFor(hash, table.length)];


e != null;


e = e.next) {


Object k;


if (e.hash == hash &&


((k = e.key) == key || (key != null && key.equals(k))))


return e;


}


return null;


}

 

在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。

时间: 2024-11-01 01:53:30

java 的HashMap底层数据结构的相关文章

[转]java 的HashMap底层数据结构

java 的HashMap底层数据结构 HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在.在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存.取value.下面就来分析HashMap的存取. 一.定义 HashMap实现了Map接口,继承AbstractMap.其中Map接口定义了键映射到值的规则,而AbstractM

jdk1.8源码解析:HashMap底层数据结构之链表转红黑树的具体时机

前言 本文从三个部分去探究HashMap的链表转红黑树的具体时机: 一.从HashMap中有关“链表转红黑树”阈值的声明: 二.[重点]解析HashMap.put(K key, V value)的源码: 三.测试: 一.从HashMap中有关“链表转红黑树”阈值的声明,简单了解HashMap的链表转红黑树的时机 在 jdk1.8 HashMap底层数据结构:散列表+链表+红黑树(图解+源码)的 “四.问题探究”中,我有稍微提到过散列表后面跟什么数据结构是怎么确定的: HashMap中有关“链表转

HashMap底层数据结构

1.    HashMap概述: HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变. 2.    HashMap的数据结构: 在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外.HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体. 从上图中可以看出,HashM

Java中HashMap的数据结构

类声明: 概述: 线程不安全: <Key, Value>两者都可以为null: 不保证映射的顺序,特别是它不保证该顺序恒久不变: HashMap使用Iterator: HashMap中hash数组的默认大小是16,增长方式一定是2的指数倍: HashMap的数据结构: 在Java语言中,最基本的结构只有两种,一个是数组,另一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造.HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体. 通过分析这两种数据结构的优劣,才

Java中HashMap底层实现原理(JDK1.8)源码分析

这几天学习了HashMap的底层实现,但是发现好几个版本的,代码不一,而且看了Android包的HashMap和JDK中的HashMap的也不是一样,原来他们没有指定JDK版本,很多文章都是旧版本JDK1.6.JDK1.7的.现在我来分析一哈最新的JDK1.8的HashMap及性能优化. 在JDK1.6,JDK1.7中,HashMap采用位桶+链表实现,即使用链表处理冲突,同一hash值的链表都存储在一个链表里.但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效

jdk1.8 HashMap底层数据结构:深入解析为什么jdk1.8 HashMap的容量一定要是2的n次幂

前言 1.本文根据jdk1.8源码来分析HashMap的容量取值问题: 2.本文有做 jdk1.8 HashMap.resize()扩容方法的源码解析:见下文“一.3.扩容:同样需要保证扩容后的容量是2的n次幂”: 3.目录: 一.jdk1.8中,对“HashMap的容量一定是2的n次幂”做了严格控制 1.默认初始容量 2.使用HashMap的有参构造函数来自定义容量的大小(保证容量是2的n次幂) 3.扩容:同样需要保证扩容后的容量是2的n次幂( jdk1.8 HashMap.resize()扩

HashMap底层数据结构之链表转红黑树的具体时机

前言 本文从三个部分去探究HashMap的链表转红黑树的具体时机: 1.从HashMap中有关"链表转红黑树"阈值的声明:2.[重点]解析HashMap.put(K key, V value)的源码:3.测试: 一.从HashMap中有关"链表转红黑树"阈值的声明,简单了解HashMap的链表转红黑树的时机 HashMap中有关"链表转红黑树"阈值的声明: /** * 使用红黑树(而不是链表)来存放元素.当向至少具有这么多节点的链表再添加元素时,

再学Java 之 HashMap的底层实现

今天参加欢聚时代的面试,我说我自己依靠自己的理解重新实现过HashMap.描述我自己的实现思想后,面试官问“hashmap”底层如果用数组不是效率比较低吗,不是更应该用红黑树吗?我一下子就蒙了.用数组的确效率比较低,但是当初对比JDK的源码发现,JDK的确是使用数组+链表来存储实体. 回来后,急忙看了一下源码,也对比了一下JDK6 和JDK 8的HashMap,发现了不太对劲的地方.原来,当初看的是JDK 6.在这个版本的JDK的确是使用数组+链表来存储.但是到了JDK 8 的时候,为了解决碰撞

Java中HashMap和SparseArray的数据结构

最近听同事说使用SparseArray代替HashMap可以提高性能,于是边对这两个类的数据结构进行简单的分析. Hashmap的数据结构  Hashmap是一个数组和链表的结合体(在数据结构称"链表散列"),如下图示: 图片来源:Java的HashMap和HashTable SparseArray的数据结构 SparseArray指的是稀疏数组(Sparse array),为了节省内存空间,并且不影响数组中原有的内容值.其内部有两个关键成员,分别是mKeys和mValues, 都是数