python的数据分析的学习方法

python数据分析的要求并不是软件开发的要求,确实,对于一门工具,不同目的的使用者,需要的技能是不一样的,比如刀这个工具,屠夫用它是杀猪的,厨师用它是切菜的,军人用它是保家卫国的,客人用它是切牛排的,每个人用的方式都不一样,对于刀的掌握方法都有特定的要求。

python数据分析,就如同学excel做数据分析一样,都是从了解python如何打开使用,如何在里面处理数据,如何筛选数据,如何统计分析,如何图表展示。python只是工具,关键还是处理问题的思维方法。我们学习python的目的不是为了写网站、写应用软件、写爬虫工具,而是数据分析,所以我们的范围就缩小到python是什么和如何使用基本功能,以及如何数据分析两个大内容。

python数据分析,步骤有三

步骤一、基本上用Numpy库做统计计算。这就如同excel里面“数据”菜单里面的那些统计汇总函数的功能。

步骤二、学习使用pandas,它的出生(2009年开源)就是为了用于金融数据分析。pandas是在Numpy的基础上开发的工具。使得统计更加方便。

步骤三、matplotlib是python在数据分析展示时用的比较主要的库,此外,还有很多图形库是基于matplotlib开发的,显示效果会更加友好和方便。如vispy,bokeh, seaborn,  pyga, folium 和networkx,这7种图形工具库的简单使用可以参见http://python.jobbole.com/84218/介绍。不过,我个人觉得并不是一定要做数据展示的,还是那句话,看每位使用者的需求是什么。

我开始学习啦……

参考网页

http://www.cnblogs.com/nxld/p/6058998.html

http://python.jobbole.com/84218/

时间: 2024-10-14 05:36:16

python的数据分析的学习方法的相关文章

利用python进行数据分析--(阅读笔记一)

以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分代码组成:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”. cython已经成为python领域中创建编译型扩展以及对接c/c++代码的一大途径. 3.在那些要求延迟性非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级.更低生产率的语言进行

《利用python进行数据分析》

今天开始码这本书--<利用python进行数据分析>.R和python都得会用才行,这是码这本书的原因.首先按照书上说的进行安装,google下载了epd_free-7.3-1-win-x86.msi,译者建议按照作者的版本安装.

利用python进行数据分析——(一)库的学习

总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间. 此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和

《利用Python进行数据分析》.(Wes McKinney).[PDF].pdf

下载地址:网盘下载 内容简介  · · · · · · [名人推荐] "科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法.本书在未来几年里肯定会成为Python领域中技术计算的权威指南." --Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一 [内容简介] 还在苦苦寻觅用python控制.处理.整理.分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy.pan

PYTHON学习(三)之利用python进行数据分析(1)---准备工作

学习一门语言就是不断实践,python是目前用于数据分析最流行的语言,我最近买了本书<利用python进行数据分析>(Wes McKinney著),还去图书馆借了本<Python数据分析基础教程--NumPy学习指南>(第二版),准备将python数据分析工具的门给入了哈哈,闲话少说,直接切入正题. 首先<利用python进行数据分析>此书的译者强烈建议计算机环境的配置最好与书上的一致,所以我找了半天书上要求用的安装包 第一,安装32位的EPDFree(书上的版本就是3

利用 Python 进行数据分析(五)NumPy 基础:ndarray 索引和切片

概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在

利用 Python 进行数据分析(三)使用 IPython 提高开发效率

一.IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效. 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工作模式是:执行 -> 探索 ,而大部分和数据分析相关的代码都含有探索式操作(比如试误法和迭代法),所以 IPython 能大大提高编码效率. IPython 发展到现在,它不仅仅只是一个加强版的 Python shell 了, 它集成了 GUI 控制台,这可以让你直接进行绘图操作:它还有一个基于 Web 的交互式笔记本

利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(2)

1.索引上的合并 有时候,DataFrame中的连接键位于其索引中.在这种情况下,你可以传入left_index = True或right_index = True(或两个都传)以说明索引应该被用作连接键: In [8]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'], ...: 'value':range(6)}) In [9]: right1 = pd.DataFrame({'group_val':[3.5, 7]},

利用 Python 进行数据分析(四)NumPy 基础:ndarray 简单介绍

一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 二.ndarray 是什么 ndarray 是一个多维的数组对象,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点. ndarray 的一个特点是同构:即其中所有元素的类型必须相同. 三.ndarray 的创建 array() 函数 最简单的方法, 使用 NumPy 提供的