正则化和归一化

http://blog.sina.com.cn/s/blog_4a1853330102w2en.html

http://blog.csdn.net/oppoa113/article/details/22102103

正则化,归一化(标准化和正规化):对数据进行预处理的两种方式,目的是让数据更便于计算和获得更加泛化的结果,但并不改变问题的本质。

正则化:要求一个逻辑回归问题,假设一个函数,覆盖所有可能:y=wx,其中w为参数向量,x为已知样本的向量,用yi表示第i个样本的真实值,用f(xi)表示样本的预测值,从而确定损失函数L(yi,f(xi))=yi?sigmoid(xi)。该损失函数代表一种误差。对于该模型y=wx的所有样本的损失平均值,我们称为经验损失(empirical loss)。

  显然,经验损失(或称经验风险)最小化(empirical risk minimization)就是求解最优模型的原则。为了达到这个目的,模型的设定会越来越复杂,最后可能造成模型只适用于当前的样本集,即出现过拟合(over fitting)问题。

  为了解决过拟合问题,通常有两种办法,第一是减少样本的特征维度;第二就是正则化(又称惩罚“penalty”)。正则化的一般形式是在整个平均损失函数后增加一个正则项(常见L2范数正则化,也有其他形式的正则化,它们的作用也不同。详见http://blog.csdn.net/zouxy09/article/details/24971995/)

  λ=0代表不进行正则化;=1通常代表合适的惩罚;举个例子=100的时候,会因为过度惩罚而造成“欠拟合”问题

  

归一化:主要看模型是否具有伸缩不变性。有些模型在各个维度进行不均匀伸缩后,最优解和原来不等价,例如SVM。

    对于这样的模型,除非本来各维数据的分布范围就比较接近,否则必须进行标准化,以免模型参数被分布范围较大或较小的数据支配。

    有些模型在各个维度进行不均匀伸缩后,最优解和原来等价,例如logistic regression(逻辑回归)。

    对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太扁,迭代算法可能收敛得很慢甚至不收敛。所以对于具有伸缩不变性的模型,最好也进行数据标准化。

https://www.zhihu.com/question/20455227

时间: 2024-10-09 22:50:43

正则化和归一化的相关文章

正则化、归一化含义解析

正则化(Regularization).归一化(也有称为正规化/标准化,Normalization)是对数据尽心预处理的方式,他们的目的都是为了让数据更便于我们的计算或获得更加泛化的结果,但并不改变问题的本质,下面对他们的作用分别做一下科普,如有不正确之处,求指正! 前言 需要注意的是,这些名词在不同的领域含义也有点区别,这里仅仅指的是在进行机器学习研究的时候所使用的意义. 一.正则化(Regularization) 李航博士在<统计学习方法>中提到,统计学习的三要素是模型.策略和算法,在机器

转:归一化与正则化

正则化.归一化含义解析 2012-12-29 正则化(Regularization).归一化(也有称为正规化/标准化,Normalization)是对数据尽心预处理的方式,他们的目的都是为了让数据更便于我们的计算或获得更加泛化的结果,但并不改变问题的本质,下面对他们的作用分别做一下科普,如有不正确之处,求指正! 前言 需要注意的是,这些名词在不同的领域含义也有点区别,这里仅仅指的是在进行机器学习研究的时候所使用的意义. 一.正则化(Regularization) 李航博士在<统计学习方法>中提

机器学习中的正则化和范数规则化

机器学习中的正则化和范数规则化 正则化和范数规则化 文章安排:文章先介绍了正则化的定义,然后介绍其在机器学习中的规则化应用L0.L1.L2规则化范数和核范数规则化,最后介绍规则化项参数的选择问题. 正则化(regularization)来源于线性代数理论中的不适定问题,求解不适定问题的普遍方法是:用一族与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法.如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容.通常的正则化方法有基于变分原理的Tikhonov正则

【转】正则化相关链接

正则化,归一化的概念 基于Matlab介绍正则化方法 正则化方法:L1和L2 regularization.数据集扩增.dropout 基于Matlab介绍机器学习中的正则化,理解正则化原理 机器学习之正则化(Regularization) 本来以为,数据归一化之前需要查看它的分布类型,所以有下面两篇文章,但是暂时还不确认到底有没有用. R语言数据可视化之数据分布图 [转]R中的几种统计分布及常用模型

广义线性模型2

1.1.2 Ridge Regression(岭回归) 岭回归和普通最小二乘法回归的一个重要差别是前者对系数模的平方进行了限制.例如以下所看到的: In [1]: from sklearn import linear_model In [2]: clf = linear_model.R linear_model.RandomizedLasso linear_model.RandomizedLogisticRegression linear_model.Ridge linear_model.Rid

[转]当当推荐团队的机器学习实践

转自:http://www.csdn.net/article/2015-10-16/2825925 先说一下我的初衷.机器学习系统现在多红多NB这件事情我已不必赘述.但是由于机器学习系统的特殊性,构建一个靠谱好用的系统却并不是件容易的事情.每当看到同行们精彩的分享时,我都会想到,这些复杂精妙的系统,是怎样构建起来的?构建过程是怎样的?这背后是否有一些坑?有一些经验?是否可以“偷”来借鉴? 所以我希望做一个更侧重“面向过程”的分享,与大家分享一下我们在构建系统时的一些实践,一些坑,以及如何从坑里爬

小团队撬动大数据——当当推荐团队的机器学习实践

先说一下我的初衷.机器学习系统现在多红多NB这件事情我已不必赘述.但是由于机器学习系统的特殊性,构建一个靠谱好用的系统却并不是件容易的事情.每当看到同行们精彩的分享时,我都会想到,这些复杂精妙的系统,是怎样构建起来的?构建过程是怎样的?这背后是否有一些坑?有一些经验?是否可以“偷”来借鉴? 所以我希望做一个更侧重“面向过程”的分享,与大家分享一下我们在构建系统时的一些实践,一些坑,以及如何从坑里爬出来. 另外,我本次分享更侧重的是“小团队”,一是因为当当目前做ML的团队确实还比较小,其次是因为据

Deep Learning 系列(4):稀疏编码(sparse coding)和主成分分析(ICA)

一直犹豫稀疏编码怎么写,来来回回看了好几遍的UFLDL.因为这不仅是DL深度学习的重要概念,也是我这段时间一直在研究的stacked ISA 深度特征学习的支柱. 这章将主要介绍一下稀疏编码的主要概念,及主成分分析的方法. 一. 稀疏编码(sparse coding): 稀疏编码算法是一种无监督(unsupervised)学习方法,它用来寻找一组"超完备"基向量来更高效地表示样本数据.(设x的维数为n,则k>n) 超完备基能更有效地找出隐含在输入数据内部的结构与模式.然而,系数a

激活函数,Batch Normalization和Dropout

神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神经元激活,输出一个变换后的神经电位值.而在神经网络的设计中引入了这一概念,来增强神经网络的非线性能力,更好的模拟自然界.所以激活函数的主要目的是为了引入非线性能力,即输出不是输入的线性组合. 假设下图中的隐藏层使用的为线性激活函数(恒等激活函数:a=g(z)),可以看出,当激活函数为线性激活函数时,