【啊哈!算法】算法7:Dijkstra最短路算法

上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”。本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。

<ignore_js_op>

与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下。

<ignore_js_op>

我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下。

<ignore_js_op>

我们将此时dis数组中的值称为最短路的“估计值”。

既然是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。通过数组dis可知当前离1号顶点最近是2号顶点。当选择了2号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”,即1号顶点到2号顶点的最短路程就是当前dis[2]值。为什么呢?你想啊,目前离1号顶点最近的是2号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得1号顶点到2号顶点的路程进一步缩短了。因为1号顶点到其它顶点的路程肯定没有1号到2号顶点短,对吧O(∩_∩)O~

既然选了2号顶点,接下来再来看2号顶点有哪些出边呢。有2->3和2->4这两条边。先讨论通过2->3这条边能否让1号顶点到3号顶点的路程变短。也就是说现在来比较dis[3]和dis[2]+e[2][3]的大小。其中dis[3]表示1号顶点到3号顶点的路程。dis[2]+e[2][3]中dis[2]表示1号顶点到2号顶点的路程,e[2][3]表示2->3这条边。所以dis[2]+e[2][3]就表示从1号顶点先到2号顶点,再通过2->3这条边,到达3号顶点的路程。

我们发现dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此dis[3]要更新为10。这个过程有个专业术语叫做“松弛”。即1号顶点到3号顶点的路程即dis[3],通过2->3这条边松弛成功。这便是Dijkstra算法的主要思想:通过“边”来松弛1号顶点到其余各个顶点的路程。

同理通过2->4(e[2][4]),可以将dis[4]的值从∞松弛为4(dis[4]初始为∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此dis[4]要更新为4)。

刚才我们对2号顶点所有的出边进行了松弛。松弛完毕之后dis数组为:

<ignore_js_op>

接下来,继续在剩下的3、4、5和6号顶点中,选出离1号顶点最近的顶点。通过上面更新过dis数组,当前离1号顶点最近是4号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对4号顶点的所有出边(4->3,4->5和4->6)用刚才的方法进行松弛。松弛完毕之后dis数组为:

<ignore_js_op>

继续在剩下的3、5和6号顶点中,选出离1号顶点最近的顶点,这次选择3号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对3号顶点的所有出边(3->5)进行松弛。松弛完毕之后dis数组为:

<ignore_js_op>

继续在剩下的5和6号顶点中,选出离1号顶点最近的顶点,这次选择5号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后dis数组为:

<ignore_js_op>

最后对6号顶点所有点出边进行松弛。因为这个例子中6号顶点没有出边,因此不用处理。到此,dis数组中所有的值都已经从“估计值”变为了“确定值”。

最终dis数组如下,这便是1号顶点到其余各个顶点的最短路径。

<ignore_js_op>

OK,现在来总结一下刚才的算法。算法的基本思想是:每次找到离源点(上面例子的源点就是1号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:

  • 将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。
  • 设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[s ][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。
  • 在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u ]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u ]+e[u ][v ]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v ]中的值。
  • 重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。

完整的Dijkstra算法代码如下:

  1. #include <stdio.h>
  2. int main()
  3. {
  4. int e[10][10],dis[10],book[10],i,j,n,m,t1,t2,t3,u,v,min;
  5. int inf=99999999; //用inf(infinity的缩写)存储一个我们认为的正无穷值
  6. //读入n和m,n表示顶点个数,m表示边的条数
  7. scanf("%d %d",&n,&m);
  8. //初始化
  9. for(i=1;i<=n;i++)
  10. for(j=1;j<=n;j++)
  11. if(i==j) e[i][j]=0;
  12. else e[i][j]=inf;
  13. //读入边
  14. for(i=1;i<=m;i++)
  15. {
  16. scanf("%d %d %d",&t1,&t2,&t3);
  17. e[t1][t2]=t3;
  18. }
  19. //初始化dis数组,这里是1号顶点到其余各个顶点的初始路程
  20. for(i=1;i<=n;i++)
  21. dis[i]=e[1][i];
  22. //book数组初始化
  23. for(i=1;i<=n;i++)
  24. book[i]=0;
  25. book[1]=1;
  26. //Dijkstra算法核心语句
  27. for(i=1;i<=n-1;i++)
  28. {
  29. //找到离1号顶点最近的顶点
  30. min=inf;
  31. for(j=1;j<=n;j++)
  32. {
  33. if(book[j]==0 && dis[j]<min)
  34. {
  35. min=dis[j];
  36. u=j;
  37. }
  38. }
  39. book[u]=1;
  40. for(v=1;v<=n;v++)
  41. {
  42. if(e[u][v]<inf)
  43. {
  44. if(dis[v]>dis[u]+e[u][v])
  45. dis[v]=dis[u]+e[u][v];
  46. }
  47. }
  48. }
  49. //输出最终的结果
  50. for(i=1;i<=n;i++)
  51. printf("%d ",dis[i]);
  52. getchar();
  53. getchar();
  54. return 0;
  55. }

复制代码

可以输入以下数据进行验证。第一行两个整数n  m。n表示顶点个数(顶点编号为1~n),m表示边的条数。接下来m行表示,每行有3个数x y z。表示顶点x到顶点y边的权值为z。

  1. 6 9
  2. 1 2 1
  3. 1 3 12
  4. 2 3 9
  5. 2 4 3
  6. 3 5 5
  7. 4 3 4
  8. 4 5 13
  9. 4 6 15
  10. 5 6 4

复制代码

运行结果是

  1. 0 1 8 4 13 17

复制代码

通过上面的代码我们可以看出,这个算法的时间复杂度是O(N*2*N)即O(N2)。其中每次找到离1号顶点最近的顶点的时间复杂度是O(N),这里我们可以用“堆”(以后再说)来优化,使得这一部分的时间复杂度降低到O(logN)。另外对于边数M少于N2的稀疏图来说(我们把M远小于N2的图称为稀疏图,而M相对较大的图称为稠密图),我们可以用邻接表(这是个神马东西?不要着急,待会再仔细讲解)来代替邻接矩阵,使得整个时间复杂度优化到O(MlogN)。请注意!在最坏的情况下M就是N2,这样的话MlogN要比N2还要大。但是大多数情况下并不会有那么多边,因此MlogN要比N2小很多。

时间: 2024-10-26 17:19:23

【啊哈!算法】算法7:Dijkstra最短路算法的相关文章

Dijkstra最短路算法

Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图(无向可以转化为双向有向),把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将 加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中.在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度

[算法第一轮复习] 最短路算法之dijkstra

1.算法描述 dijkstra,一种求单源正权图上的最短路的算法 主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将 加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中.在加入的过程中,总保持从源

dijkstra 最短路算法

最朴素的做法o(n^2)#include<iostream>using namespace std;#include<vector>#include<algorithm>#include<string>#include<string.h>const int MAX = 2002;int n;int graph[MAX][MAX];int dis[MAX];bool vis[MAX];const int INF = 0X7FFFFFFF;int d

【算法】祭奠spfa 最短路算法dijspfa

题目链接 本题解来源 其他链接 卡spfa的数据组 题解堆优化的dijkstra 题解spfa讲解 来自以上题解的图片来自常暗踏阴 使用前向星链表存图 直接用队列优化spfa struct cmp { bool operator()(int a,int b) { return dist[a]>dist[b]; } }; priority_queue<int,vector<int>,cmp> q;void dijspfa() { q.push(s); memset(inq,0,

【算法杂谈】各种最短路算法模板

[先来一发SPFA] int spfa_dfs(int u) { vis[u]=1; for(int k=f[u]; k!=0; k=e[k].next) { int v=e[k].v,w=e[k].w; if( d[u]+w < d[v] ) { d[v]=d[u]+w; if(!vis[v]) { if(spfa_dfs(v)) return 1; } else return 1; } } vis[u]=0; return 0; } SPFA [再来一个Floyd] for(int k=1;

dijkstra(迪杰斯特拉)最短路算法的堆优化

dijkstra(迪杰斯特拉)最短路算法是一种时间复杂度经过严格证明的最短路算法. 优化在于每次取最小值的时候采用堆优化,但是在最短路松弛过程中,dist是不断修改的,所以,为了能使复杂度降到O(nlogn),dist修改的同时,在堆中也要修改. 注意dijkstra(迪杰斯特拉)最短路算法只能用于正权边. 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algo

最短路算法 :Bellman-ford算法 &amp; Dijkstra算法 &amp; floyd算法 &amp; SPFA算法 详解

 本人QQ :2319411771   邮箱 : [email protected] 若您发现本文有什么错误,请联系我,我会及时改正的,谢谢您的合作! 本文为原创文章,转载请注明出处 本文链接   :http://www.cnblogs.com/Yan-C/p/3916281.html . 很早就想写一下最短路的总结了,但是一直懒,就没有写,这几天又在看最短路,岁没什么长进,但还是加深了点理解. 于是就想写一个大点的总结,要写一个全的. 在本文中因为邻接表在比赛中不如前向星好写,而且前向星效率并

[ACM] 最短路算法整理(bellman_ford , SPFA , floyed , dijkstra 思想,步骤及模板)

以杭电2544题目为例 最短路 Problem Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? Input 输入包括多组数据.每组数据第一行是两个整数N.M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路.N=M=0

最短路算法(dijkstra,bellman_ford,floyd)

最短路算法 dijkstra(初级的最短路算法,适合稠密图,可用邻接表优化) bool relax(int u,int v) { double tmp=max(dist[u],edge[u][v]); if(tmp<dist[v]){ dist[v]=tmp; } } void dijkstra() { memset(vis,0,sizeof(vis)); for(int i=0;i<n;i++){ int x; double mindist=INF; for(int j=0;j<n;j