linux网络编程之shutdown() 与 close()函数详解

linux网络编程之shutdown() 与 close()函数详解

参考TCPIP网络编程和UNP;

shutdown函数不能关闭套接字,只能关闭输入和输出流,然后发送EOF,假设套接字为A,那么这个函数会关闭所有和A相关的套接字,包括复制的;而close能直接关闭套接字。

1.close()函数

[cpp] view plain copy

print?

  1. <span style="font-size:13px;">#include<unistd.h>
  2. int close(int sockfd);     //返回成功为0,出错为-1.</span>

close 一个套接字的默认行为是把套接字标记为已关闭,然后立即返回到调用进程,该套接字描述符不能再由调用进程使用,也就是说它不能再作为read或write的第一个参数,然而TCP将尝试发送已排队等待发送到对端的任何数据,发送完毕后发生的是正常的TCP连接终止序列。

在多进程并发服务器中,父子进程共享着套接字,套接字描述符引用计数记录着共享着的进程个数,当父进程或某一子进程close掉套接字时,描述符引用计数会相应的减一,当引用计数仍大于零时,这个close调用就不会引发TCP的四路握手断连过程。

2.shutdown()函数

[cpp] view plain copy

print?

  1. <span style="font-size:13px;">#include<sys/socket.h>
  2. int shutdown(int sockfd,int howto);  //返回成功为0,出错为-1.</span>

该函数的行为依赖于howto的值

1.SHUT_RD:值为0,关闭连接的读这一半。

2.SHUT_WR:值为1,关闭连接的写这一半。

3.SHUT_RDWR:值为2,连接的读和写都关闭。

终止网络连接的通用方法是调用close函数。但使用shutdown能更好的控制断连过程(使用第二个参数)。

3.两函数的区别
    close与shutdown的区别主要表现在:
    close函数会关闭套接字ID,如果有其他的进程共享着这个套接字,那么它仍然是打开的,这个连接仍然可以用来读和写,并且有时候这是非常重要的 ,特别是对于多进程并发服务器来说。

而shutdown会切断进程共享的套接字的所有连接,不管这个套接字的引用计数是否为零,那些试图读得进程将会接收到EOF标识,那些试图写的进程将会检测到SIGPIPE信号,同时可利用shutdown的第二个参数选择断连的方式。

下面将展示一个客户端例子片段来说明使用close和shutdown所带来的不同结果:

客户端有两个进程,父进程和子进程,子进程是在父进程和服务器建连之后fork出来的,子进程发送标准输入终端键盘输入数据到服务器端,知道接收到EOF标识,父进程则接受来自服务器端的响应数据。

[cpp] view plain copy

print?

  1. /* First  Sample client fragment,
  2. * 多余的代码及变量的声明已略       */
  3. s=connect(...);
  4. if( fork() ){   /*      The child, it copies its stdin to the socket              */
  5. while( gets(buffer) >0)
  6. write(s,buf,strlen(buffer));
  7. close(s);
  8. exit(0);
  9. }
  10. else {          /* The parent, it receives answers  */
  11. while( (n=read(s,buffer,sizeof(buffer)){
  12. do_something(n,buffer);
  13. /* Connection break from the server is assumed  */
  14. /* ATTENTION: deadlock here                     */
  15. wait(0); /* Wait for the child to exit          */
  16. exit(0);
  17. }

对于这段代码,我们所期望的是子进程获取完标准终端的数据,写入套接字后close套接字,并退出,服务器端接收完数据检测到EOF(表示数据已发送完),也关闭连接,并退出。接着父进程读取完服务器端响应的数据,并退出。然而,事实会是这样子的嘛,其实不然!子进程close套接字后,套接字对于父进程来说仍然是可读和可写的,尽管父进程永远都不会写入数据。因此,此socket的断连过程没有发生,因此,服务器端就不会检测到EOF标识,会一直等待从客户端来的数据。而此时父进程也不会检测到服务器端发来的EOF标识。这样服务器端和客户端陷入了死锁(deadlock)。如果用shutdown代替close,则会避免死锁的发生。

[cpp] view plain copy

print?

    1. if( fork() ) {  /* The child                    */
    2. while( gets(buffer)
    3. write(s,buffer,strlen(buffer));
    4. shutdown(s,1); /* Break the connection
    5. *for writing, The server will detect EOF now. Note: reading from
    6. *the socket is still allowed. The server may send some more data
    7. *after receiving EOF, why not? */
    8. exit(0);
    9. }
时间: 2024-12-26 20:33:33

linux网络编程之shutdown() 与 close()函数详解的相关文章

网络编程之TCP/IP各层详解

网络编程之TCP/IP各层详解 我们将应用层,表示层,会话层并作应用层,从TCP/IP五层协议的角度来阐述每层的由来与功能,搞清楚了每层的主要协议,就理解了整个物联网通信的原理. 首先,用户感知到的只是最上面一层--应用层,自上而下每层都依赖于下一层,所以我们从最下层开始切入,比较好理解. 每层都运行特定的协议,越往上越靠近用户,越往下越靠近硬件. 一.物理层 由来:孤立的计算机之间要一起"玩耍",就必须接入Internet,即计算机之间必须完成组网. 物理层功能:主要是基于电器特性发

linux网络编程之TCP/IP基础篇(一)

从今天起,将会接触到网络编程,平台是linux,实现语言C语言,最后将会实现一个简易的miniftp服务器. 主要的内容安排为:linux网络编程之TCP/IP基础篇,SOCKET编程篇,进程间通信篇,线程篇,实战ftp篇. 1.ISO/OSI参考模型:open system interconnection开放系统互联模型是由OSI(international organization for standardization )国际标准化组织定义的网络分层模型,共七层. 各层的具体含义: 物理层

(10)Linux 网络编程之ioctl函数

1.介绍 Linux网络程序与内核交互的方法是通过ioctl来实现的,ioctl与网络协议栈进行交互,可得到网络接口的信息,网卡设备的映射属性和配置网络接口.并且还能够查看,修改,删除ARP高速缓存的信息,所以,我们有必要了解一下ioctl函数的具体实现. 2.相关结构体与相关函数 #include int ioctl(int d,int request,....); 参数: d-文件描述符,这里是对网络套接字操作,显然是套接字描述符 request-请求码 省略的部分对应不同的内存缓冲区,而具

Linux网络编程之socket相关结构体

Linux中的网络编程是通过 Socket (套接字)实现. Socket有三种类型: 流式套接字(SOCK_STREAM) 流式套接字可以提供可靠的.面向连接的通讯流,它使用TCP协议.TCP保证了数据传输的正确性和顺序性. 数据报套接字(SOCK_DGRAM) 数据报套接字定义了一种无连接的服务,数据通过相互独立的报文进行传输,是无序的,并且不保证可靠,无差错,它使用数据报协议UDP. 原始套接字(SOCK_RAM) 原始套接字允许使用IP协议,主要用于新的网络协议的测试等. Socket

(转)linux网络编程之IO模型

原文:http://www.cnblogs.com/kunhu/p/3624000.html 1. 概念理解 在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式:同步:      所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回.也就是必须一件一件事做,等前一件做完了才能做下一件事. 例如普通B/S模式(同步):提交请求->等待服务器处理->处理完毕返回 这个期间客户端浏览器不能干任何事 异步:  

Linux多任务编程之二:fork()函数及其基础实验(转)

来源:CSDN  作者:王文松 转自Linux公社 fork()函数 在 Linux 中创建一个新进程的唯一方法是使用fork()函数.fork()函数是 Linux 系统中一个非常重要的函数,和咱们以前遇到过的函数由一些区别,因为它看起来执行一次却返回两个值,这又作何解释?不着急,慢慢看. 函数说明 fork()函数用于从已存在的一个进程中创建一个新的进程,新进程称为子进程,而原进程称为父进程.使用fork()函数得到的子进程是父进程的 一个复制品,它从父进程处继承了整个进程的地址空间,包括进

Linux网络编程之epoll知识点备忘

首先是关于IO多路复用的基础概念: select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作.但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间. 关键要了解阻塞非阻塞.同步异步之间的关系与区别,然后对

linux网络编程之posix共享内存

今天继续研究posix IPC对象,这次主要是学习一下posix共享内存的使用方法,下面开始: 下面编写程序来创建一个共享内存: 编译运行: 那posix的共享内存存放在哪里呢?上节中学的posix的消息队列是在虚拟文件当中创建一个消息队列,需要我们手工将它挂载到某个目录下才能看到,同样的,posix共享内存也是需要将其挂载,只不过这个挂载操作是由系统完成的,而不用我们人工去操作了,已经挂载到了/dev/shm下了,如下: 接下来要介绍的函数为修改共享内存的大小: [说明]:实际上ftrunca

Linux网络编程之select、poll、epoll的比较,以及epoll的水平触发(LT)和边缘触发(ET)

Linux的网络通信先后推出了select.poll.epoll三种模式. select有以下三个问题: (1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大. (2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大. (3)select支持的文件描述符数量太小了,默认是1024. poll解决了第三个问题,select保存描述符fd的数据结构是数组,poll改成了链表,突破了fd的个数限制. 但是第1和第2个问题依然