HashMap put,get操作

HashMap中的put方法

public V put(K key, V value) {
        //当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因
        if (key == null)
            return putForNullKey(value);
        //计算key的hash值
        int hash = hash(key.hashCode());                  ------(1)
        //计算key hash 值在 table 数组中的位置
        int i = indexFor(hash, table.length);             ------(2)
        //从i出开始迭代 e,找到 key 保存的位置
        for (Entry<K, V> e = table[i]; e != null; e = e.next) {
            Object k;
            //判断该条链上是否有hash值相同的(key相同)
            //若存在相同,则直接覆盖value,返回旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;    //旧值 = 新值
                e.value = value;
                e.recordAccess(this);
                return oldValue;     //返回旧值
            }
        }
        //修改次数增加1
        modCount++;
        //将key、value添加至i位置处
        addEntry(hash, key, value, i);
        return null;
    }

key为null:

private V putForNullKey(V value) {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        addEntry(0, null, value, 0);
        return null;
    }

获取Entry的第一个元素table[0],并基于第一个元素的next属性开始遍历,直到找到key为null的Entry,将其value设置为新的value值。
如果没有找到key为null的元素,则调用如上述代码的addEntry(0, null, value, 0);增加一个新的entry

void addEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
        if (size++ >= threshold)
            resize(2 * table.length);
    }

hash方法:

static int hash(int h) {
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

讲解说明:

将hash函数作为已给定的hashCode的一个补充,可以提高hash函数的质量。hash质量的好坏是非常重要的,因为HashMap用2的次幂作为表的hash长度,这就容易产生冲突,因为hashCodes在低位不是不同的(hashCodes that do not differ in lower bits)。注意:Null 的key的hash值总是0,即他在table的索引为0。

       让我们通过例子来帮助我们理解一下上面的话。加入说key object的hashCode()只返回三个值:31、63和95.31、63和95都是int型,所以是32位的。

        31=00000000000000000000000000011111         63=00000000000000000000000000111111         95=00000000000000000000000001011111

      现在加入HashMap的table长为默认值16(2^4,HashMap的长度总是2的次幂)

      假如我们不用hash函数,indexFor将返回如下值:

      31=00000000000000000000000000011111 => 1111=15       63=00000000000000000000000000111111  => 1111=15       95=00000000000000000000000001011111 => 1111=15

为什么会这样?因为当我们调用indexFor函数的时候,它将执行31&15,,63&15和95&15的与操作,比如说95&15得出一下结果:

        00000000000000000000000001011111 &00000000000000000000000000001111

        也就是说(2^n-1)总会是一个1的序列,因此不管怎样,最后会执行0&1的于然后得出0.

        上面的例子,也就解释了凡是在末尾全是1111的都返回相同的index,因此,尽管我们有不同的hashcode,Entry对象却讲都被存在table中index为15的位置。

        倘若我们使用了hash函数,对于上面每一个hashcode,经过hash作用作用后如下:

        31=00000000000000000000000000011111 => 00000000000000000000000000011110         63=00000000000000000000000000111111  => 00000000000000000000000000111100         95=00000000000000000000000001011111 => 00000000000000000000000001011010

        现在在通过新的hash之后再使用indexFor将会返回:

        00000000000000000000000000011110 =>1110=14         00000000000000000000000000111100 =>1100=12         00000000000000000000000001011010 =>1010=10

        在使用了hash函数之后,上面的hashcodes就返回了不同的index,因此,hash函数对hashmap里的元素进行了再分配,也就减少了冲突同时提高了性能。

         hash操作最主要的目的就是在最显著位的hashcode的差异可见,以致于hashmap的元素能够均匀的分布在整个桶里。

         有两点需要注意:

          如果两个key有相同的hashcode,那他们将被分配到table数组的相同index上

           如果两个key不具有相同的hashcode,那么他们或许可能,或许也不可能被分配到table数组相同的index上。

indexFor方法:

static int indexFor(int h, int length) {
        return h & (length-1);
    }

讲解说明:

这个方法有点意思,主要作用是定位hashmap里的bucket。
-------------------------------------------------------
大家知道hashmap底层就是一个数组,然后数组里每个元素装了个链表。
这个数组元素称为bucket桶
-------------------------------------------------------
先复习一下逻辑与。

0 & 0 = 0;0 & 1 = 0;1 & 0 = 0;1 & 1 = 1;
第二个参数length始终为2的n次方,所以,
换成二进制数就是 100,1000,10000,...
(length -1)就是 11, 111,1111,...

这样的话,
第一个参数h比第二个参数小的情况下,那结果就是h。
第一个参数h比第二个参数大的情况下,如下:
例:
h=18 -> 10010
length-1=15 -> 01111

所以在第一个参数比第二个参数大的情况下等于第一参数%第二参数,取余数

addEntry

void addEntry(int hash, K key, V value, int bucketIndex) {
        //获取bucketIndex处的Entry
        Entry<K, V> e = table[bucketIndex];
        //将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry
        table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
        //若HashMap中元素的个数超过极限了,则容量扩大两倍
        if (size++ >= threshold)
            resize(2 * table.length);
    }

put的流程:

当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。

若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。

如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。

如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头(最先保存的元素放在链尾),新元素设置为Entry[0],其next指针指向原有对象,即原有对象为Entry[1]

比如, 第一个键值对A进来,通过计算其key的hash得到的i=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其i也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,i也等于0,那么C.next = B,Entry[0] = C;这样我们发现i=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起,也就是说数组中存储的是最后插入的元素。

HashMap的get操作:

public V get(Object key) {
        if (key == null)
            return getForNullKey();
        int hash = hash(key.hashCode());
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))//-------------------1----------------
                return e.value;
        }
        return null;
    }

当key为null时,调用getForNullKey()

private V getForNullKey() {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null)
                return e.value;
        }
        return null;
    }

当key不为null时,先根据hash函数得到hash值,在更具indexFor()得到i的值,循环遍历链表,如果有:key值等于已存在的key值,则返回其value。

=======================================================================================================

JDK8的讲解图:

HashMap的put方法

=====================================================================

JDK1.8以后对hashmap进行了大量的优化

JDK8 因为对自己改造过的哈希大量冲突时的红黑树有信心,所以简单一些,只是把高16位异或下来。

  static int hash(int h) {
            return h ^ (h >>> 16);
        }

所以即使Key比较均匀无哈希冲突,JDK8也比JDK7略快的原因大概于此。

存在哈希冲突的情况,比如两个哈希值取模后落在同一个桶上,或者两条不同的key有相同的哈希值。
JDK7的做法是建一条链表,后插入的元素在上面,一个个地执行上面的判断。
而JDK8则在链表长度达到8,而且桶数量达到64时,建一棵红黑树,解决严重冲突时的性能问题。

http://www.cnblogs.com/chenssy/p/3521565.html

http://blog.csdn.net/zhangerqing/article/details/8193118

http://tech.meituan.com/java-hashmap.html

http://calvin1978.blogcn.com/articles/hashmap.html

http://www.importnew.com/7099.html

时间: 2024-08-24 01:44:18

HashMap put,get操作的相关文章

HashMap之put 操作

key值为空的情况:进行putForNull操作:1.判断key值为null的Entry是否需存在,如果存在则将老值替换成新值(oldValue=newValue,返回老值),如果不存在的话,就addEntry(0,null,value,0)2.addEntry(int hash, K key, V value, int bucketIndex)在添加新的Entry的时候,Entry.key的hash计算出的位置如果有Entry元素的时候,将元素加入到该链表的头部,先进入的放到链表的尾部void

HashMap数据结构

2.1 HashMap 2.1.1 HashMap介绍 先看看HashMap类头部的源码: public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable HashMap基于哈希表的 Map 接口的实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.(除了非同步和允许使用 null 之外,HashMap 类与 Hash

深入理解JAVA集合系列三:HashMap的死循环解读

由于在公司项目中偶尔会遇到HashMap死循环造成CPU100%,重启后问题消失,隔一段时间又会反复出现.今天在这里来仔细剖析下多线程情况下HashMap所带来的问题: 1.多线程put操作后,get操作导致死循环. 2.多线程put非null元素后,get操作得到null值. 3.多线程put操作,导致元素丢失. 死循环场景重现 下面我用一段简单的DEMO模拟HashMap死循环: 1 public class Test extends Thread 2 { 3 static HashMap<

HashMap简单源码及多线程下的死循环

主要记录hashMap的一些基本操作源码实现原理以及多线程情况下get()操作的死循环引发原因 一.hashMap简介 1.hashMap集合的主要属性及方法 (默认初始化容量)DEFAULT_INITIAL_CAPACITY = 16 (默认最大容量)MAXIMUM_CAPACITY = 1 << 30 (默认加载因子)DEFAULT_LOAD_FACTOR = 0.75f (Entry数组)Entry[] table (Entry实例的数量)size put(K key, V value)

Map实现之HashMap(结构及原理)(转)

java.util包中的集合类包含 Java 中某些最常用的类.最常用的集合类是 List 和 Map.List 的具体实现包括 ArrayList 和 Vector,它们是可变大小的列表,比较适合构建.存储和操作任何类型对象元素列表.List 适用于按数值索引访问元素的情形. Map 则提供了一个更通用的元素存储方法.Map 集合类用于存储元素对(称作“键”和“值”),其中每个键映射到一个值.从概念上而言,您可以将 List 看作是具有数值键的 Map.而实际上,除了 List 和 Map 都

多线程下HashMap的死循环问题

多线程下[HashMap]的问题: 1.多线程put操作后,get操作导致死循环. 2.多线程put非NULL元素后,get操作得到NULL值. 3.多线程put操作,导致元素丢失. 本次主要关注[HashMap]-死循环问题. 为何出现死循环? 大家都知道,HashMap采用链表解决Hash冲突,具体的HashMap的分析可以参考一下Java集合---HashMap源码剖析 的分析.因为是链表结构,那么就很容易形成闭合的链路,这样在循环的时候只要有线程对这个HashMap进行get操作就会产生

java集合之hashmap

第1部分 HashMap介绍 HashMap简介 HashMap 的实现不是同步的,这意味着它不是线程安全的.它的key.value都可以为null.此外,HashMap中的映射不是有序的. HashMap 的实例有两个参数影响其性能:“初始容量” 和 “加载因子”.容量是哈希表中桶的数量,初始容量 只是哈希表在创建时的容量.加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度.当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构

java中HashMap在多线程环境下引起CPU100%的问题解决(转)

最近项目中出现了Tomcat占用CPU100%的情况,原以为是代码中出现死循环,后台使用jstack做了dump,发现是系统中不合理使用HashMap导致出现了死循环(注意不是死锁). 产生这个死循环的根源在于对一个未保护的共享变量 — 一个"HashMap"数据结构的操作.当在所有操作的方法上加了"synchronized"后,一切恢复了正常. 这算jvm的bug吗?应该说不是的,这个现象很早以前就报告出来了(详细见:http://bugs.sun.com/bug

HashMap源码深入研究

简介 HashMap是采用链表和位桶来来实现的,由于一个位桶存在元素太多会导致get效率低,因此在jdk1.8中采用的红黑树实现,当链表长度大于TREEIFY_THRESHOLD(值为8)时会转换为红黑树来提高查询效率. HashMap是一种以键值对存储的框架,它是Map的实现类,提供了Map的基础操作,与HashTalbe不同的是HashMap不是线程安全的,key和value都是允许为null的:另外hashmap存储的内容顺序会变化的. HashMap对与get和put操作提供了相对稳定的