剖析Elasticsearch集群系列之二:分布式的三个C、translog和Lucene段

转载:http://www.infoq.com/cn/articles/anatomy-of-an-elasticsearch-cluster-part02

共识——裂脑问题及法定票数的重要性

共识是分布式系统的一项基本挑战。它要求系统中的所有进程/节点必须对给定数据的值/状态达成共识。已经有很多共识算法诸如RaftPaxos等,从数学上的证明了是行得通的。但是,Elasticsearch却实现了自己的共识系统(zen discovery),Elasticsearch之父Shay Banon在这篇文章中解释了其中的原因。zen discovery模块包含两个部分:

  • Ping: 执行节点使用ping来发现彼此
  • 单播(Unicast):该模块包含一个主机名列表,用以控制哪些节点需要ping通

Elasticsearch是端对端的系统,其中的所有节点彼此相连,有一个master节点保持活跃,它会更新和控制集群内的状态和操作。建立一个新的Elasticsearch集群要经过一次选举,选举是ping过程的一部分,在所有符合条件的节点中选取一个master,其他节点将加入这个master节点。ping间隔参数ping_interval的默认值是1秒,ping超时参数ping_timeout的默认值是3秒。因为节点要加入,它们会发送一个请求给master节点,加入超时参数join_timeout的默认值是ping_timeout值的20倍。如果master出现问题,那么群集中的其他节点开始重新ping以启动另一次选举。这个ping的过程还可以帮助一个节点在忽然失去master时,通过其他节点发现master。

注意:默认情况下,client节点和data节点不参与这个选举过程。可以在elasticsearch.yml配置文件中,通过设置discovery.zen.master_election.filter_client属性和discovery.zen.master_election.filter_data属性为false来改变这种默认行为。

故障检测的原理是这样的,master节点会ping所有其他节点,以检查它们是否还活着;然后所有节点ping回去,告诉master他们还活着。

如果使用默认的设置,Elasticsearch有可能遭到裂脑问题的困扰。在网络分区的情况下,一个节点可以认为master死了,然后选自己作为master,这就导致了一个集群内出现多个master。这可能会导致数据丢失,也可能无法正确合并数据。可以按照如下公式,根据有资格参加选举的节点数,设置法定票数属性的值,来避免爆裂的发生。

discovery.zen.minimum_master_nodes = int(# of master eligible nodes/2)+1

这个属性要求法定票数的节点加入新当选的master节点,来完成并获得新master节点接受的master身份。对于确保群集稳定性和在群集大小变化时动态地更新,这个属性是非常重要的。图a和b演示了在网络分区的情况下,设置或不设置minimum_master_nodes属性时,分别发生的现象。

注意:对于一个生产集群来说,建议使用3个节点专门做master,这3个节点将不服务于任何客户端请求,而且在任何给定时间内总是只有1个活跃。

我们已经搞清楚了Elasticsearch中共识的处理,现在让我们来看看它是如何处理并发的。

并发

Elasticsearch是一个分布式系统,支持并发请求。当创建/更新/删除请求到达主分片时,它也会被平行地发送到分片副本上。但是,这些请求到达的顺序可能是乱序的。在这种情况下,Elasticsearch使用乐观并发控制,来确保文档的较新版本不会被旧版本覆盖。

每个被索引的文档都拥有一个版本号,版本号在每次文档变更时递增并应用到文档中。这些版本号用来确保有序接受变更。为了确保在我们的应用中更新不会导致数据丢失,Elasticsearch的API允许我们指定文件的当前版本号,以使变更被接受。如果在请求中指定的版本号比分片上存在的版本号旧,请求失败,这意味着文档已经被另一个进程更新了。如何处理失败的请求,可以在应用层面来控制。Elasticsearch还提供了其他的锁选项,可以通过这篇来阅读。

当我们发送并发请求到Elasticsearch后,接下来面对的问题是——如何保证这些请求的读写一致?现在,还无法清楚回答,Elasticsearch应落在CAP三角形的哪条边上,我不打算在这篇文章里解决这个素来已久的争辩。

但是,我们要一起看下如何使用Elasticsearch实现写读一致。

一致——确保读写一致

对于写操作而言,Elasticsearch支持的一致性级别,与大多数其他的数据库不同,允许预检查,来查看有多少允许写入的可用分片。可选的值有quorumoneall。默认的设置为quorum,也就是说只有当大多数分片可用时才允许写操作。即使大多数分片可用,还是会因为某种原因发生写入副本失败,在这种情况下,副本被认为故障,分片将在一个不同的节点上重建。

对于读操作而言,新的文档只有在刷新时间间隔之后,才能被搜索到。为了确保搜索请求的返回结果包含文档的最新版本,可设置replication为sync(默认),这将使操作在主分片和副本碎片都完成后才返回写请求。在这种情况下,搜索请求从任何分片得到的返回结果都包含的是文档的最新版本。即使我们的应用为了更高的索引率而设置了replication=async,我们依然可以为搜索请求设置参数_preferenceprimary。这样,搜索请求将查询主分片,并确保结果中的文档是最新版本。

我们已经了解了Elasticsearch如何处理共识、并发和一致,让我们来看看分片内部的一些主要概念,正是这些特点让Elasticsearch成为一个分布式搜索引擎。

Translog(预写日志)

因为关系数据库的发展,预写日志(WAL)或者事务日志(translog)的概念早已遍及数据库领域。在发生故障的时候,translog能确保数据的完整性。translog的基本原理是,变更必须在数据实际的改变提交到磁盘上之前,被记录下来并提交。

当新的文档被索引或者旧的文档被更新时,Lucene索引将发生变更,这些变更将被提交到磁盘以持久化。这是一个很昂贵的操作,如果在每个请求之后都被执行。因此,这个操作在多个变更持久化到磁盘时被执行一次。正如我们在上一篇文章中描述的那样,Lucene提交的冲洗(flush)操作默认每30分钟执行一次或者当translog变得太大(默认512MB)时执行。在这样的情况下,有可能失去2个Lucene提交之间的所有变更。为了避免这种问题,Elasticsearch采用了translog。所有索引/删除/更新操作被写入到translog,在每个索引/删除/更新操作执行之后(默认情况下是每5秒),translog会被同步以确保变更被持久化。translog被同步到主分片和副本之后,客户端才会收到写请求的确认。

在两次Lucene提交之间发生硬件故障的情况下,可以通过重放translog来恢复自最后一次Lucene提交前的任何丢失的变更,所有的变更将会被索引所接受。

注意:建议在重启Elasticsearch实例之前显式地执行冲洗translog,这样启动会更快,因为要重放的translog被清空。POST /_all/_flush命令可用于冲洗集群中的所有索引。

使用translog的冲洗操作,在文件系统缓存中的段被提交到磁盘,使索引中的变更持久化。现在让我们来看看Lucene的段。

Lucene的段

Lucene索引是由多个段组成,段本身是一个功能齐全的倒排索引。段是不可变的,允许Lucene将新的文档增量地添加到索引中,而不用从头重建索引。对于每一个搜索请求而言,索引中的所有段都会被搜索,并且每个段会消耗CPU的时钟周、文件句柄和内存。这意味着段的数量越多,搜索性能会越低。

为了解决这个问题,Elasticsearch会合并小段到一个较大的段(如下图所示),提交新的合并段到磁盘,并删除那些旧的小段。

这会在后台自动执行而不中断索引或者搜索。由于段合并会耗尽资源,影响搜索性能,Elasticsearch会节制合并过程,为搜索提供足够的可用资源。

时间: 2024-10-12 16:30:36

剖析Elasticsearch集群系列之二:分布式的三个C、translog和Lucene段的相关文章

剖析Elasticsearch集群系列第一篇 Elasticsearch的存储模型和读写操作

剖析Elasticsearch集群系列涵盖了当今最流行的分布式搜索引擎Elasticsearch的底层架构和原型实例. 本文是这个系列的第一篇,在本文中,我们将讨论的Elasticsearch的底层存储模型及CRUD(创建.读取.更新和删除)操作的工作原理. Elasticsearch是当今最流行的分布式搜索引擎,GitHub. SalesforceIQ.Netflix等公司将其用于全文检索和分析应用.在Insight,我们用到了Elasticsearch的诸多不同功能,比如: 全文检索 比如找

剖析Elasticsearch集群系列之三:近实时搜索、深层分页问题和搜索相关性权衡之道

转载:http://www.infoq.com/cn/articles/anatomy-of-an-elasticsearch-cluster-part03 近实时搜索 虽然Elasticsearch中的变更不能立即可见,它还是提供了一个近实时的搜索引擎.如前一篇中所述,提交Lucene的变更到磁盘是一个代价昂贵的操作.为了避免在文档对查询依然有效的时候,提交变更到磁盘,Elasticsearch在内存缓冲和磁盘之间提供了一个文件系统缓存.内存缓存(默认情况下)每1秒刷新一次,在文件系统缓存中使

36_02Linux集群系列之二--LVS类型讲解

实现负载均衡的方法:Hardware    F5,BIG-IP    Cirtix,Netscaler    A10        (常见的是前两者)Software    四层        LVS    七层        nginx            http,smtp,pop3.imap        haproxy            http,tcp(mysql,smtp)  主要还是为http做负载均衡 四层和七层的区别主要在于层数越少,性能越高,但支持的特性也更少. LVS

ElasticSearch实战系列一: ElasticSearch集群+Kinaba安装教程

前言 本文主要介绍的是ElasticSearch集群和kinaba的安装教程. ElasticSearch介绍 ElasticSearch是一个基于Lucene的搜索服务器,其实就是对Lucene进行封装,提供了 REST API 的操作接口. ElasticSearch作为一个高度可拓展的开源全文搜索和分析引擎,可用于快速地对大数据进行存储,搜索和分析. ElasticSearch主要特点:分布式.高可用.异步写入.多API.面向文档 . ElasticSearch核心概念:近实时,集群,节点

mongo 3.4分片集群系列之六:详解配置数据库

这个系列大致想跟大家分享以下篇章(我会持续更新的(^ω^)): 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建分片集群--哈希分片 + 安全 4.mongo 3.4分片集群系列之四:搭建分片集群--哈希分片 + 安全 + 区域 5.mongo 3.4分片集群系列之五:详解平衡器 6.mongo 3.4分片集群系列之六:详解配置数据库 7.mongo 3.4分片集群系列之七:配置数

mongo 3.4分片集群系列之四:搭建分片集群--哈希分片 + 安全 + 区域

这个系列大致想跟大家分享以下篇章(我会持续更新的(^ω^)): 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建分片集群--哈希分片 + 安全 4.mongo 3.4分片集群系列之四:搭建分片集群--哈希分片 + 安全 + 区域 5.mongo 3.4分片集群系列之五:详解平衡器 6.mongo 3.4分片集群系列之六:详解配置数据库 7.mongo 3.4分片集群系列之七:配置数

mongo 3.4分片集群系列之八:分片管理

这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建分片集群--哈希分片 + 安全 4.mongo 3.4分片集群系列之四:搭建分片集群--哈希分片 + 安全 + 区域 5.mongo 3.4分片集群系列之五:详解平衡器 6.mongo 3.4分片集群系列之六:详解配置数据库 7.mongo 3.4分片集群系列之七:配置数据库管理 8.mongo 3

ELK+Filebeat+Nginx集中式日志解决方案(二)——添加ElasticSearch集群

一.使用说明: Elasticsearch插件:  Elasticsearch常用的几个插件为: # head # 地址  https://github.com/mobz/elasticsearch-head mobz/elasticsearch-head # kopf # 地址  https://github.com/lmenezes/elasticsearch-kopf lmenezes/elasticsearch-kopf # bigdesk # 地址 https://github.com

ElasticSearch集群服务器配置

一.安装 简单的安装与启动于前文ElasticSearch初探(一)已有讲述,这里不再重复说明. 二.启动 1.自带脚本启动 1)bin/elasticsearch,不太任何参数,默认在前端启动 2)bin/elasticsearch-d,带参-d,表示在后台作为服务线程启动 还可以设置更多的参数:bin/elasticsearch-Xmx2g-Xms2g-Des.index.store.type=memory--node.name=my-node 注意:如果是在局域网中运行elasticsea