二分查找和斐波那契查找

二分查找

说明:查找的数组或列表必须是有序的,若无序,先进行排序

复杂度:时间复杂度 O(log2n),空间复杂度O(n)

C++源码(递归和非递归两个版本)

#include <iostream>
using namespace std;

int a[] = { 1, 2, 3, 4, 5, 6, 8 };

int BinarySearch1(int l, int r, int value)
{
	int mid = (l + r) / 2;
	if (l == r && a[l] != value)
		return -1;
	if (a[mid] == value)
		return mid;
	if (a[mid] > value)
		return BinarySearch1(l, mid - 1, value);
	else
		return BinarySearch1(mid + 1, r, value);

}

int BinarySearch2(int value){
	int l = 0;
	int r = sizeof(a) / sizeof(a[0]) - 1;
	while (l <= r){
		int mid = (l + r) / 2;
		if (a[mid] == value)
			return (l + r) / 2;
		if (a[mid] > value)
			r = mid - 1;
		else
			l = mid + 1;
	}
	return -1;
}

int main(void)
{

	cout << "Binary Search (recursive) result: " << BinarySearch1(0, sizeof(a) / sizeof(a[0]) - 1, 5) << endl;;
	cout << "Binary Search (no recursive) result: " << BinarySearch2(4) << endl;
}

斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

  黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

  0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

  大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)。然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

  基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

  相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:

  1)相等,mid位置的元素即为所求

  2)>,low=mid+1;

3)<,high=mid-1。

  斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;

开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种

  1)相等,mid位置的元素即为所求

  2)>,low=mid+1,k-=2;

  说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

  3)<,high=mid-1,k-=1。

  说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。

  复杂度分析:最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。

#include <iostream>
#include <vector>
using namespace std;
const int MAX_SIZE = 20;

int a[] = { 1, 5, 15, 22, 25, 31, 39, 42, 47, 49, 59, 68, 88 };

void Fibonacci(int F[])
{
	F[0] = 0;
	F[1] = 1;
	for (size_t i = 2; i < MAX_SIZE; i++)
		F[i] = F[i - 1] + F[i - 2];

}

int FibonacciSearch(int value)
{
	int F[MAX_SIZE];
	Fibonacci(F);
	int n = sizeof(a) / sizeof(int);

	int k = 0;
	while (n > F[k] - 1)
		k++;
	vector<int> temp;
	temp.assign(a, a + n);
	for (size_t i = n; i < F[k] - 1; i++)
		temp.push_back(a[n - 1]);

	int l = 0, r = n - 1;
	while (l <= r)
	{
		int mid = l + F[k - 1] - 1;
		if (temp[mid] < value){
			l = mid + 1;
			k = k - 2;
		}
		else if (temp[mid] > value){
			r = mid - 1;
			k = k - 1;
		}
		else{
			if (mid < n)
				return mid;
			else
				return n - 1;
		}
	}
	return -1;
}

int main()
{

	int index = FibonacciSearch(88);
	cout << index << endl;

}
时间: 2024-10-25 02:13:21

二分查找和斐波那契查找的相关文章

看数据结构写代码(53) 静态查找表(线性查找,二分查找,斐波那契查找,插值查找)

查找定义:根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录). 查找表分类:静态查找表和动态查找表. 静态查找表:只查找,而不进行插入,删除. 动态查找表:在查找过程中同时插入查找表中不存在的数据元素,或者从查找表中删除已经存在的某个数据元素. 静态表的 查找 大致 四种 算法: 线性查找,二分查找,斐波那契查找和插值查找. 其中 在线性查找之前,对表 无要求.对于 其余三种 需要 在查找之前 排序.插值查找 除了 需要 排序,还需要 均匀分布. 下面 给出代码: 线性查

(java)有序表查找——折半查找,插值查找,斐波那契查找

有序表查找 /* 主函数 */ public class OrderTableSearch { public static void main(String[] args) { int [] a= {0,1,16,24,35,47,59,62,73,88,99}; System.out.println(FibonacciSearch(a, 10, 88)); System.out.println(InsertKeySearch(a, 10, 88)); System.out.println(Bi

数据结构(六)查找---有序表查找(三种查找方式:折半,插值,斐波拉契查找)

前提 有序表查找要求我们的数据是有序的,是排序好的,我们只需要进行查找即可 我们下面将介绍折半查找(二分查找),插值查找,斐波那契查找 一:折半查找 (一)定义 二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法.但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列. (二)查找过程 首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关

"二分查找(Binary Search)"与"斐波那契查找(Fibonacci Search)"

首先,我们来看一个笔者的拙作,一段二分查找代码 //返回值是key的下标,如果A中不存在key则返回-1 template <class T> int BinSearch(T* A, const T &key, int lo, int hi) {     int mid;     while(lo<hi)     {         mid = lo + (hi-lo)/2;         if(key < A[mid])             hi = mid-1;

【算法】先生,您点的查找套餐到了(二分、插入和斐波那契查找)

参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>                                  — — 严蔚敏 Interpolation Search[插值查找]     — —  维基百科 Fibonacci Search[斐波那契查找]   — —  GeeksforGeeks 根据输入的一个关键字(Key),  在一个有序数组内查找与该关键

斐波那契查找原理详解与实现

最近看见一个要求仅使用加法减法实现二分查找的题目,百度了一下,原来要用到一个叫做斐波那契查找的的算法.查百度,是这样说的: 斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的.他要求开始表中记录的个数为某个斐波那契数小1,即n=F(k)-1;  开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种  1)相等,mid位置的元素即为所求  2)>   ,low=mid+1,k-=2;说明:low=mid+1说明待查找的元素在

斐波那契查找(超详解)

// 斐波那契查找.cpp #include <iostream> #include <string.h> using namespace std; const int max_size=20;//斐波那契数组的长度 /*构造一个斐波那契数组*/ void Fibonacci(int * F) { F[0]=0; F[1]=1; for(int i=2;i<max_size;++i) F[i]=F[i-1]+F[i-2]; } /*定义斐波那契查找法*/ int Fibona

斐波那契查找法

void Fibonacci(int *f) { f[0] = 1; f[1] = 1; for (int i = 2; i < MAXSIZE; i++) { f[i] = f[i - 1] + f[i - 2]; } } int Fibonacci_Search(int *a, int n, int key) { int low, high, mid; low = 1; high = n - 1; int k = 0; int F[MAXSIZE]; Fibonacci(F); //问题一:

斐波那契查找与黄金分割

黄金分割:指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1: 0.618被公认为最具有审美意义的比例数字,不仅体现在诸如绘画.雕塑.音乐.建筑等艺术领域,而且在管理.工程设计等方面也有着不可忽视的作用,因此被称为黄金分割: 斐波那契数列:1,1,2,3,5,8,13,21,34,55,89......(从第三个数开始,后边每一个数都是前两个数的和),然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会