Java虚拟机:如何判定哪些对象可回收?

版权声明:本文为博主原创文章,转载请注明出处,欢迎交流学习!

在堆内存中存放着Java程序中几乎所有的对象实例,堆内存的容量是有限的,Java虚拟机会对堆内存进行管理,回收已经“死去”的对象(即不可能再被任何途径使用的对象),释放内存。垃圾收集器在对堆内存进行回收前,首先要做的第一件事就是确定这些对象中哪些还存活着,哪些已经死去。Java虚拟机是如何判断对象是否可以被回收的呢?

引用计数算法

       引用计数算法的原理是这样的:给对象添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;在任何时刻计数器的值为0的对象就是不可能再被使用的,也就是可被回收的对象。

引用计数算法的效率很高,但是主流的JVM并没有选用这种算法来判定可回收对象,因为它有一个致命的缺陷,那就是它无法解决对象之间相互循环引用的的问题,对于循环引用的对象它无法进行回收。

假设有这样一段代码:

public class Object {

    public Object instance;

    public static void main(String[] args) {

        // 1
        Object objectA = new Object();
        Object objectB = new Object();

        // 2
        objectA.instance = objectB;
        objectB.instance = objectA;

        // 3
        objectA = null;
        objectB = null;

    }

程序启动后,objectA和objectB两个对象被创建并在堆中分配内存,这两个对象都相互持有对方的引用,除此之外,这两个对象再无任何其他引用,实际上这两个对象已经不可能再被访问(引用被置空,无法访问),但是它们因为相互引用着对方,导致它们的引用计数器都不为0,于是引用计数算法无法通知GC收集器回收它们。

实际上,当第1步执行时,两个对象的引用计数器值都为1;当第2步执行时,两个对象的引用计数器都为2;当第3步执行时,二者都清为空值,引用计数器值都变为1。根据引用计数算法的思想,值不为0的对象被认为是存活的,不会被回收;而事实上这两个对象已经不可能再被访问了,应该被回收。

可达性分析算法

       在主流的JVM实现中,都是通过可达性分析算法来判定对象是否存活的。可达性分析算法的基本思想是:通过一系列被称为"GC Roots"的对象作为起始点,从这些节点开始向下搜索,搜索走过的路径称为引用链,当一个对象到GC Roots对象没有任何引用链相连,就认为GC Roots到这个对象是不可达的,判定此对象为不可用对象,可以被回收。

在上图中,objectA、objectB、objectC是可达的,不会被回收;objectD、objectE虽然有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。

在Java中,可作为GC Roots的对象包括下面几种:

1、虚拟机栈中引用的对象;

2、方法区中类静态属性引用的对象;

3、方法区中常量引用的对象;

4、本地方法栈中Native方法引用的对象。

以上探讨了判定对象是否可回收的两种算法,判定对象是否可回收只是垃圾回收的第一步,接下来还要解决何时回收以及如何回收的问题,在后面的文章中我们来探讨这些问题。

时间: 2024-12-26 20:44:26

Java虚拟机:如何判定哪些对象可回收?的相关文章

(转)《深入理解java虚拟机》学习笔记3——垃圾回收算法

Java虚拟机的内存区域中,程序计数器.虚拟机栈和本地方法栈三个区域是线程私有的,随线程生而生,随线程灭而灭:栈中的栈帧随着方法的进入和退出而进行入栈和出栈操作,每个栈帧中分配多少内存基本上是在类结构确定下来时就已知的,因此这三个区域的内存分配和回收都具有确定性.垃圾回收重点关注的是堆和方法区部分的内存. 常用的垃圾回收算法有: (1).引用计数算法: 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器都为0的对象就是不再被使用的,垃

转!!Java虚拟机堆的内存分配和回收

Java内存分配和回收,主要就是指java堆的内存分配和回收.java堆一般分为2个大的区域,一块是新生代,一块是老年代.在新生代中又划分了3块区域,一块eden区域,两块surviver区域.一般称为from surviver和to surviver.这些区域的大小可以自己指定.比如:(-Xms20M 表示可用堆内存大小:-Xmx40M 表示最大堆内存,在堆内存大小不够时,会扩展到最大堆内存:-Xmn10M 表示新生代内存大小). 新生代中的对象会在eden区域分配,然后eden区域的内存不够

Java虚拟机(二)对象的创建与OOP-Klass模型

相关文章 Java虚拟机系列 前言 在前一篇文章中我们学习了Java虚拟机的结构原理与运行时数据区域,那么我们大概知道了Java虚拟机的内存的概况,那么内存中的数据是如何创建和访问的呢?这篇文章会给你答案. 1.对象的创建 对象的创建通常是通过new一个对象而已,当虚拟机接收到一个new指令时,它会做如下的操作. (1)判断对象对应的类是否加载.链接.初始化 虚拟机接收到一条new指令时,首先会去检查这个指定的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被类加载

深入理解Java虚拟机笔记---引用类型和对象是否死亡

在JDK1.2以前,Java中的引用定义得很传统:如果reference类型的数值代表的是另外一块内存的起始地址,就称这块内存代表中一个引用.这种定义很纯粹,但太过狭隘,一个对象在这种定义下只有被引用或者没有引用两种状态,对于如何描述一个"食之无味,弃之可惜"的对象就显得无能为力:如果内存在进行垃圾收集后还是非常紧张,则可以抛弃这些对象.很多系统的缓存功能都符合这样的应用场景. 在JDK1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference),软

深入理解JAVA虚拟机之JVM性能篇---垃圾回收

一.基本垃圾回收算法 1. 按基本回收策略分 1) 引用计数(Reference Counting)  对象增加一个引用,即增加一个计数,删除一个引用则减少一个计数.垃圾回收时,只用收集计数为0的对象.此算法最致命的是无法处理循环引用的问题. 2)标记-清除(Mark-Sweep)  执行分两阶段.第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除. 缺点是此算法需要暂停整个应用,同时会产生内存碎片. 3)复制(Copying) 把内存空间划为两个相等的区域,每

深入java虚拟机(二) 对象的创建

java创建对象通常的方式是使用new指令,虚拟机会首先检查new指令的参数(也就是new关键字后面跟着的类名)是否能够在常量池中找到一个类的符号引用,并根据这个符号引用检查其代表的类是否已经加载.解析和初始化,如果没有就先执行类的加载过程.类加载检查后,就会给对象分配内存.新生的对象一般会存在于java堆中,根据java堆的情况,分配内存主要分为两种方式:"指针碰撞"(bump the pointer)和"空闲列表"(free list). 指针碰撞:假设java

自制Java虚拟机(四)-对象、new、invokespecial

一.对象的表示 刚开始学Java的时候,图书馆各种教程,书名往往都是"Java面向对象高级编程",通常作者都会与C++做个比较,列出的优点往往都有纯面向对象.自动垃圾收集(不用管理内存).跨平台(Write once, run everywhere 是宣传的重点,前提是需要在每个平台上安装jvm).没有指针(后来证明是有的).安全等.本篇文章就来实现面向对象(简单版,暂不考虑继承),涉及的指令主要有: new 创建一个对象getfield 获取对象的一个实例属性(field),push

实战java虚拟机(二)——垃圾回收算法

前言 垃圾回收是Java体系最重要的组成部分之一,和C/C++不同,Java虚拟机提供了全自动的内存管理方案,尽量减少了我们在内存资源管理方面的工作量,但是这套方案也并不完美,因此我们也需要深入学习垃圾回收的算法,在工作中遇到内存溢出等问题时也容易更快找到问题所在 一.引用计数法 引用计数法是最古老的垃圾收集算法,它的实现非常简单,只需要为每个对象配备一个整型计数器即可,当对象被引用时,计数器+1,引用失效时计数器-1. 显而易见,这种方式有着两个非常严重的问题: 1.无法处理循环引用,如果对象

Java虚拟机之垃圾回收

简述 Java与那些较传统的语言比如C++有个很大不同就是垃圾回收策略了.前者通常是虚拟机自动帮我们做了,而后者就需要我们手动来完成. Java虚拟机帮我们完成了垃圾回收,是不是意味着我们就不用完全去管它了呢?当然不是的.在很多场景下,虚拟机默认做的并不能使我们满意.比如某个java应用较大时,频繁产生GC,就会非常影响我们应用的响应速度.这时候就需要我们根据自身需要,进行相应的调整.那么如何调整呢?这就需要我们对虚拟机的垃圾回收机制有所了解了. 找到将要回收的对象 如何找到要回收的对象呢?这里