[USACO08OCT]牧场散步Pasture Walking

[USACO08OCT]牧场散步Pasture Walking

题目描述

The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i.

Some pairs of pastures are connected by one of N-1 bidirectional walkways that the cows can traverse. Walkway i connects pastures A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has a length of L_i (1 <= L_i <= 10,000).

The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.

The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between 1 <= L_i <= 10,000 pairs of pastures (each pair given as a query p1,p2 (1 <= p1 <= N; 1 <= p2 <= N).

POINTS: 200

有N(2<=N<=1000)头奶牛,编号为1到W,它们正在同样编号为1到N的牧场上行走.为了方 便,我们假设编号为i的牛恰好在第i号牧场上.

有一些牧场间每两个牧场用一条双向道路相连,道路总共有N - 1条,奶牛可以在这些道路 上行走.第i条道路把第Ai个牧场和第Bi个牧场连了起来(1 <= A_i <= N; 1 <= B_i <= N),而它的长度 是 1 <= L_i <= 10,000.在任意两个牧场间,有且仅有一条由若干道路组成的路径相连.也就是说,所有的道路构成了一棵树.

奶牛们十分希望经常互相见面.它们十分着急,所以希望你帮助它们计划它们的行程,你只 需要计算出Q(1 < Q < 1000)对点之间的路径长度•每对点以一个询问p1,p2 (1 <= p1 <= N; 1 <= p2 <= N). 的形式给出.

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and Q
  • Lines 2..N: Line i+1 contains three space-separated integers: A_i, B_i, and L_i
  • Lines N+1..N+Q: Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: p1 and p2

输出格式:

  • Lines 1..Q: Line i contains the length of the path between the two pastures in query i.

输入输出样例

输入样例#1:

4 2
2 1 2
4 3 2
1 4 3
1 2
3 2

输出样例#1:

2
7

说明

Query 1: The walkway between pastures 1 and 2 has length 2.

Query 2: Travel through the walkway between pastures 3 and 4, then the one between 4 and 1, and finally the one between 1 and 2, for a total length of 7.

树剖LCA模板

  1 #include <cstdio>
  2 #include <cctype>
  3 #include <queue>
  4
  5 const int MAXN=1010;
  6 const int INF=0x3f3f3f3f;
  7
  8 int n,q,inr;
  9
 10 int dep[MAXN],fa[MAXN],son[MAXN],siz[MAXN],id[MAXN],top[MAXN],dis[MAXN];
 11
 12 bool vis[MAXN];
 13
 14 struct node {
 15     int to;
 16     int next;
 17     int val;
 18     node() {};
 19     node(int to,int val,int next):to(to),val(val),next(next) {}
 20 };
 21 node e[MAXN<<1];
 22
 23 int head[MAXN],tot;
 24
 25 inline void read(int&x) {
 26     int f=1;register char c=getchar();
 27     for(x=0;!isdigit(c);c==‘-‘&&(f=-1),c=getchar());
 28     for(;isdigit(c);x=x*10+c-48,c=getchar());
 29     x=x*f;
 30 }
 31
 32 inline void add(int x,int y,int val) {
 33     e[++tot]=node(y,val,head[x]);
 34     head[x]=tot;
 35     e[++tot]=node(x,val,head[y]);
 36     head[y]=tot;
 37 }
 38
 39 void SPFA() {
 40     std::queue<int> q;
 41     for(int i=1;i<=n;++i) vis[i]=false,dis[i]=INF,son[i]=-1;
 42     dis[1]=0;
 43     q.push(1);
 44     while(!q.empty()) {
 45         int u=q.front();
 46         q.pop();
 47         for(int i=head[u];i;i=e[i].next) {
 48             int v=e[i].to;
 49             if(dis[v]>dis[u]+e[i].val) {
 50                 dis[v]=dis[u]+e[i].val;
 51                 if(!vis[v]) q.push(v),vis[v]=true;
 52             }
 53         }
 54     }
 55 }
 56
 57 void DFS_1(int u,int f) {
 58     dep[u]=dep[f]+1;
 59     fa[u]=f;
 60     siz[u]=1;
 61     for(int i=head[u];i;i=e[i].next) {
 62         int v=e[i].to;
 63         if(v==f) continue;
 64         DFS_1(v,u);
 65         siz[u]+=siz[v];
 66         if(son[u]==-1||siz[son[u]]<siz[v]) son[u]=v;
 67     }
 68 }
 69
 70 void DFS_2(int u,int tp) {
 71     top[u]=tp;
 72     id[u]=++inr;
 73     if(son[u]==-1) return;
 74     DFS_2(son[u],tp);
 75     for(int i=head[u];i;i=e[i].next) {
 76         int v=e[i].to;
 77         if(v==fa[u]||v==son[u]) continue;
 78         DFS_2(v,v);
 79     }
 80 }
 81
 82 inline int LCA(int x,int y) {
 83     while(top[x]!=top[y]) {
 84         if(dep[top[x]]<dep[top[y]]) x^=y^=x^=y;
 85         x=fa[top[x]];
 86     }
 87     if(dep[x]>dep[y]) x^=y^=x^=y;
 88     return x;
 89 }
 90
 91 int hh() {
 92     read(n);read(q);
 93     for(int x,y,z,i=1;i<n;++i) {
 94         read(x);read(y);read(z);
 95         add(x,y,z);
 96     }
 97     SPFA();
 98     DFS_1(1,0);
 99     DFS_2(1,1);
100     for(int x,y,i=1;i<=q;++i) {
101         read(x);read(y);
102         int lca=LCA(x,y);
103         printf("%d\n",dis[x]+dis[y]-2*dis[lca]);
104     }
105     return 0;
106 }
107
108 int sb=hh();
109 int main(int argc,char**argv) {;}

代码

时间: 2024-10-10 21:41:33

[USACO08OCT]牧场散步Pasture Walking的相关文章

P2912 [USACO08OCT]牧场散步Pasture Walking

题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i. Some pairs of pastures are connected by one of N-1 bidirectional

【洛谷P2912】[USACO08OCT]牧场散步Pasture Walking

题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i. Some pairs of pastures are connected by one of N-1 bidirectional

洛谷 P2912 [USACO08OCT]牧场散步Pasture Walking

题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i. Some pairs of pastures are connected by one of N-1 bidirectional

[luoguP2912] [USACO08OCT]牧场散步Pasture Walking(lca)

传送门 水题. 直接倍增求lca. x到y的距离为dis[x] + dis[y] - 2 * dis[lca(x, y)] ——代码 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #define MAXN 20002 5 6 using namespace std; 7 8 int n, q, cnt; 9 int head[MAXN], to[MAXN], next[MAXN], va

[USACO08OCT]牧场散步Pasture Walking (LCA) (乱搞)

题面传送门我太懒了所以吃掉题面 题解 可以发现如果两点不在一条链上的话,那么他们的最短路径一定会经过LCA. 所以可以维护一下每个点到树根的距离,然后大力前缀和乱搞就好了. #include <bits/stdc++.h> const int max_n=1e4+5; int N,M,cnt; int depth[max_n],father[15][max_n],lg2[max_n],first_edge[max_n],dis[max_n]; struct edge { int to,w,ne

[USACO08OCT] Pasture Walking

题目链接 LCA裸题 #include<cstdio> #define MAXN 1005 using namespace std; int N,Q,tot=0; struct size{ int v,w,next; }G[MAXN<<1]; int head[MAXN],anc[11][MAXN],dis[MAXN],d[MAXN]; inline void add(int u,int v,int w){ G[++tot].v=v;G[tot].w=w;G[tot].next=h

【Luogu】P2912牧场散步(TarjanLCA)

题目链接 老天--终于碰上一个除了模板之外的LCA题了 这道题用Tarjan来LCA.树上两个点的路径是唯一的,所以钦定一个根,两点间的路径就是两点到根的路径减去双倍的公共祖先到根的路径.大概很好理解. #include<cstdio> #include<cctype> #include<cstring> #include<iostream> using namespace std; inline long long read(){ long long nu

BZOJ3437:小P的牧场(DP+斜率优化)

小P的牧场[题目描述]背景:小P 是个特么喜欢玩MC 的孩纸...小P 在MC 里有n 个牧场,自西向东呈一字形排列(自西向东用1…n 编号),于是他就烦恼了:为了控制这n 个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于

1643: [Usaco2007 Oct]Bessie&#39;s Secret Pasture 贝茜的秘密草坪

1643: [Usaco2007 Oct]Bessie's Secret Pasture 贝茜的秘密草坪 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 268  Solved: 223[Submit][Status] Description 农夫约翰已经从他的牧场中取得了数不清块数的正方形草皮,草皮的边长总是整数(有时农夫约翰割草皮的刀法不合适,甚至切出了边长为0的正方形草皮),他已经把草皮放在了一个奶牛贝茜已经知道的地方. 贝茜总是希望把美味的草皮