cogs 2223. [SDOI2016 Round1] 生成魔咒

               ★★☆ 输入文件:menci_incantation.in 输出文件:menci_incantation.out 简单对比

                        时间限制:1 s 内存限制:128 MB

【题目描述】
魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示。例如可以将魔咒字符 1、2 拼凑起来形成一个魔咒串 [1,2]。
一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒。
例如 S=[1,2,1] 时,它的生成魔咒有 [1]、[2]、[1,2]、[2,1]、[1,2,1] 五种。S=[1,1,1] 时,它的生成魔咒有 [1]、[1,1]、[1,1,1] 三种。
最初 S 为空串。共进行 n 次操作,每次操作是在 S 的结尾加入一个魔咒字符。每次操作后都需要求出,当前的魔咒串 S 共有多少种生成魔咒。

【输入格式】
第一行一个整数 n。
第二行 n 个数,第 i 个数表示第 i 次操作加入的魔咒字符。

【输出格式】
输出 n 行,每行一个数。第 i 行的数表示第 i 次操作后 S 的生成魔咒数量。

【样例输入】
7

1 2 3 3 3 1 2

【样例输出】
1

3

6

9

12

17

22

【提示】
对于 10% 的数据,1≤n≤10。
对于 30% 的数据,1≤n≤100。
对于 60% 的数据,1≤n≤1000。
对于 100% 的数据,1≤n≤100000。

用来表示魔咒字符的数字 x 满足 1≤x≤10^9。

题解:

  题意是在一个字符串后面加上一个字符,问加上这个字符后现在有多少本质不同的字符串。

  询问不同子串个数,想到后缀数组的一个经典应用,就是通过height[]来求一个字符串中有多少本质不同的子串。对于这个问题,我们可以想,每个子串都是某个后缀的前缀,那么问题就转化成了对于每一个后缀,求出它能贡献出的与以前不同的前缀的个数,答案累加即可。举几个例子可以发现,每个后缀贡献的答案就是这个后缀的长度减去以前的后缀与此后缀的LCP的最大值,而这个最大值就是height[i]。

  对于这个题,由于字符串是由空字符一个一个添加并一个一个询问的,所以可以先把字符串翻转,转化成后缀数组的形式,答案就是求当前这个串的长度减去已有的串和它LCP的最大值。关键就是怎么求这个LCP,这个值由第二段的描述可以看出,假设当前串的rank=k,和它构成LCP的最大值的串的rank应该是k+1或K-1。这个可以用 hash+二分+set维护,set来找前驱和后继,二分用来比较两个字符串的大小,原理就是二分出两个串的LCP,判断下一位的大小即可。

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef unsigned long long ULL;
 4 const int maxn=200000;
 5 const ULL BASE=1e9+7;
 6 int N,now;
 7 ULL a[maxn],base[maxn],hash[maxn],ANS;
 8 inline ULL get_hash(ULL from,ULL len){
 9     return hash[from]-hash[from+len]*base[len];
10 }
11 inline int find(int l,int r,int f1,int f2){
12     if(l+1>=r){
13         if(get_hash(f1,r)==get_hash(f2,r)) return r;
14         else return l;
15     }
16     int mid=(l+r)>>1;
17     if(get_hash(f1,mid)==get_hash(f2,mid)) return find(mid,r,f1,f2);
18     else return find(l,mid-1,f1,f2);
19 }
20 struct cmp{
21     bool operator()(const int &aa,const int &bb){
22         int len=find(0,1e5,aa,bb);
23         return a[aa+len]<a[bb+len];
24     }
25 };
26 set<int,cmp> S;
27 set<int,cmp>::iterator tmp1,tmp2;
28 int main(){
29     scanf("%d",&N);
30     base[0]=1; for(int i=1;i<=N;i++) base[i]=base[i-1]*BASE;
31     for(int i=N;i>=1;i--){
32         scanf("%d",&a[i]); now=0;
33         hash[i]=hash[i+1]*BASE+a[i];
34         tmp1=S.insert(i).first;
35         tmp2=tmp1;
36         if(tmp1!=S.begin()){
37             tmp1--;
38             now=find(0,1e5,i,*tmp1);
39         }
40         if(++tmp2!=S.end()){
41             now=max(now,find(0,1e5,i,*tmp2));
42         }
43         ANS+=(ULL)N-i+1-now;
44         printf("%llu\n",ANS);
45     }
46     return 0;
47 }

  

时间: 2024-12-06 22:16:58

cogs 2223. [SDOI2016 Round1] 生成魔咒的相关文章

LibreOJ #2033. 「SDOI2016」生成魔咒

二次联通门 : LibreOJ #2033. 「SDOI2016」生成魔咒 /* LibreOJ #2033. 「SDOI2016」生成魔咒 调了整整一天啊... 绝望啊 最后发现是1打成i了啊!!! */ #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <map> const int BUF = 10000020; char

【SDOI2016】生成魔咒

Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2,1].[1,2,1] 五种.S=[1,1,1] 时,它的生成魔咒有 [1]. [1,1].[1,1,1] 三种.最初 S 为空串.共进行 n 次操作,每次操作是在 S 的结尾加入一个魔咒字符.每次操作后都 需要求出,当前的

【BZOJ4516】【SDOI2016】生成魔咒 [SAM]

生成魔咒 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2,1].[1,2,1] 五种. S=[1,1,1] 时,它的生成魔咒有 [1].[

[Sdoi2016]生成魔咒[SAM or SA]

4516: [Sdoi2016]生成魔咒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 569[Submit][Status][Discuss] Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2

BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

#include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<cmath> #include<algorithm> #include<cstdlib> #include<map> #define N 200005 #define ll long long using namespace std; int read()

bzoj4516: [Sdoi2016]生成魔咒(SAM)

4516: [Sdoi2016]生成魔咒 题目:传送门 题解: 真奥义之SAM裸题... 其实对于当前新增节点x的操作,每次对ans的贡献就是dep[x]-dep[fail[x]](根据fail指针的定义随便YY) 然后有思路之后乍看题目每个x是10^9...瞬间GG %了已发cc然后被D飞,直接上map啊 代码: 1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cmath

P4070 [SDOI2016]生成魔咒

题目地址:P4070 [SDOI2016]生成魔咒 相信看到题目之后很多人跟我的思路是一样的-- 肯定要用 SA(P3809 [模板]后缀排序) 肯定要会求本质不同的子串个数(P2408 不同子串个数) 然后?就不会了...... 瓶颈在哪儿? 你会发现每往后添加一个字符,整个 sa 数组只会插入一个数,要维护不难 但是 height 会无规律变化,这就导致无法高效维护 怎么办呢? 倒置字符串 我们将整个字符串倒置过来 显然本质不同的子串个数不会变化 而每往前添加一个字符串, height 的变

[SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流

[SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次从后缀集合中删掉一个后缀. 预处理出后缀数组和高度数组后,用平衡树维护所有后缀集合(按照后缀排序),要删除一个后缀 \(S[sa[p],n]\) 时,找到它在平衡树上的前驱 \(u\) 和后继 \(v\) ,如果都存在,那么这一步的贡献就是 \[(n-sa[p]+1) - Max(h[p],h[v]

Bzoj4516 [Sdoi2016]生成魔咒

Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 947  Solved: 529 Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2,1].[1,2,1] 五种.S=[1,1,1] 时,它的生成魔咒有 [1]. [1,1].[