大数据时代的遨游

Hadoop来临

特点:

海量数据需要及时分析和处理。

海量数据需要深入分析和挖掘。

数据需要长期保存

问题:

磁盘IO成为一种瓶颈,而非CPU资源。

网络带宽是一种稀缺资源

硬件故障成为影响稳定的一大因素

Hadoop在国内的应用

奇虎360:Hadoop存储软件管家中软件,使用CDN技术将用户请求引到最近的Hadoop集群并进行下载

京东、百度:存储、分析日志、数据挖掘和机器学习(主要是推荐系统)

广告类公司:存储日志,通过协调过滤算法为客户推荐广告

Yahoo:垃圾邮件过滤

华为:云计算平台

Facebook:日志存储,实时分析

某公安部项目:网民QQ聊天记录与关联人调查系统,使用Hbase实现

某学校:学生上网与社会行为分析,使用hadoop

淘宝、阿里:国内使用Hadoop最深入的公司,整个Taobao和阿里都是数据驱动的

Hadoop介绍

作者:Doug Cutting(Hadoop的得名 :“这个名字是我孩子给一个棕黄色的大象玩具命名的。我的命名标准就是简短,容易发音和拼写,没有太多的意义,并且不会被用于别处。)

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。

Hadoop特点

⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

5.低成本。与一体机、商用数据仓库等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。

Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

Hadoop生态结构

Hbase

Nosql数据库,Key-Value存储

最大化利用内存

HDFS

hadoop distribute file system分布式文件系统

最大化利用磁盘

MapReduce

编程模型,主要用来做数据的分析

最大化利用CPU

Hadoop测试常见问题和测试方法

http://xqtesting.blog.51cto.com/4626073/1349097

时间: 2024-10-12 16:55:25

大数据时代的遨游的相关文章

计算机网络管理基础服务安装+大数据时代的网络运维

使用yum方式完成服务安装 ___By Nemo(仅供参考) Notice:Apache 安装好之后,我又改回桥接模式用rpm安装了. 首先,让你的虚拟机上个网,所以需要把网卡设置成nat模式,在宿主机上先拨个号,设好后重启linux系统. 重启后,打开firefox,看是不是能上网.Ok,但nat模式默认的ip是动态分配的,咱们得按照老师的要求把设成你静态的学生牌号.所以咱们得这么设一下!应该通过vmware虚拟机中-->Edit(编 缉)-->Virtual Net Editor(虚拟网络

读<<大数据时代>>的一些感想

第一次听说<<大数据时代>>这本书,是在网上看到的央视搞的一个2013中国好书评选活动推荐的25本"中国好书"的榜单中看到的.然后迅速上豆瓣上查看了一下对该书的评价,一看非常高,再加上央视的推荐是从2013在中国出版的40册图书中选出25本,可以说是精华了.果断定了一本,花了三天时间读完了.   大数据这个名词或者说概念从被提出开始,经过短短几年的发展,已经传的沸沸扬扬了,经常见诸媒体上.好像哪家媒体的科技板块每天不弄一些这样的新闻条,它就显得不够档次一样.这是

当不再炒作大数据的时候,大数据时代就真的来了

从2015年开始,大数据就已经被移出了Gartner的新兴技术炒作曲线."Big Data"(大数据)一词最早于2011年8月出现在Gartner新兴技术炒作曲线中,当时Gartner预计大数据技术需要2年到5年才能进入企业的实际生产型应用中.从那以后,大数据就迅速被市场热炒,最终在2015年彻底在Gartner新兴技术炒作曲线中消失. 进入2016年,大数据已经进入了实际的企业生产应用,在切实推动企业向数字化转型.另一家市场调查公司IDC则强调,在未来5年中,全球的数据驱动型企业将获

大数据时代新闻采编人员职业能力培训

原文  http://datameng.com/info/2014/03/big-data-xinwen-caibian/ 据统计,到2013年,全世界储存的信息如果记录在光盘上,再把这些光盘叠加起来,高度等于从地球到月球的距离.美国互联网数据中心指出,目前世界 上90%以上的数据是近几年才产生的.互联网上的数据每年将增加50%,每两年翻一番.因此有学者认为,人类进入了大数据时代.一般意义上,大数据是指无 法在可容忍的时间内用传统IT技术和软硬件工具对其进行感知.获取.管理.处理和服务的数据集合

LinkedIn高级分析师王益:大数据时代的理想主义和现实主义(图灵访谈)

转自:http://www.ituring.com.cn/article/75445 王益,LinkedIn高级分析师.他曾在腾讯担任广告算法和策略的技术总监,在此期间他发明了并行机器学习系统“孔雀”,它可以从数十亿的用户行为或文本数据中学习到上百万的潜在主题,该系统被应用在腾讯可计算广告业务中.在此之前,他在Google担任软件工程师,并开发了一个分布式机器学习工具,这个工具让他获得了2008年的“Google APAC 创新奖”.王益曾在清华大学和香港城市大学学习,并取得了清华大学机器学习和

决胜大数据时代:Hadoop&amp;Yarn&amp;Spark企业级最佳实践(8天完整版脱产式培训版本)

Hadoop.Yarn.Spark是企业构建生产环境下大数据中心的关键技术,也是大数据处理的核心技术,是每个云计算大数据工程师必修课. 课程简介 大数据时代的精髓技术在于Hadoop.Yarn.Spark,是大数据时代公司和个人必须掌握和使用的核心内容. Hadoop.Yarn.Spark是Yahoo!.阿里淘宝等公司公认的大数据时代的三大核心技术,是大数据处理的灵魂,是云计算大数据时代的技术命脉之所在,以Hadoop.Yarn.Spark为基石构建起来云计算大数据中心广泛运行于Yahoo!.阿

柯南君:看大数据时代下的IT架构(5)消息队列之RabbitMQ--案例(Work Queues起航)

一.回顾 让我们回顾一下,在上几章里都讲了什么?总结如下: <柯南君:看大数据时代下的IT架构(1)业界消息队列对比> <柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍> <柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控> <柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)> 二.Work Queues(using the Java Cl

【互动问答分享】第5期决胜云计算大数据时代Spark亚太研究院公益大讲堂

Spark亚太研究院100期公益大讲堂 [第5期互动问答分享] Q1:spark怎样支持即席,应该不是spark sql吧,是hive on spark么? Spark1.0 以前支持即席查询的技术是Shark; Spark 1.0和 Spark 1.0.1支持的即席查询技术是Spark SQL; 尚未发布的Spark 1.1开始 Spark SQL是即席查询的核心,我们期待Hive on Spark也能够支持即席查询: Q2:现在spark 1.0.0版本是支持hive on spark么,它

大数据时代的机器学习

本文参考CCF YOCSEF的"大数据时代的机器学习报告会"的相关内容. 张长水:大数据时代的机器学习 VS 传统机器学习 从机器学习角度看,"大数据"指的是数据量大,数据本身不够精确,数据混杂,数据自然产生.机器学习对大数据的处理的两个挑战: 数据量大导致计算困难 分布在不同服务器上的数据存在一定联系,这些数据基本上不满足"独立同分布"假设,传统的模型和算法很难适应. 大数据时代给机器学习带来新的机遇: 在某些应用条件下,高维空间中的局部数据变