prim算法

#include <iostream>
#include <algorithm>
using namespace std;
#define MAX 5
#define INF 32765

int AdjMtx[MAX][MAX]=
{{INF ,1,INF,4,3},
{1,INF,2,INF,INF},
{INF,2,INF,2,3},
{4,INF,2,INF,1},
{3,INF,3,1,INF}};

int lowcost[5][2];//lowcost[][0]表示是否被选中,lowcost[][1]表示当前每个结点到选中结点的最小权值
int adjecent[MAX];
void prim(int st)
{
	int i;
	for(i=0;i<MAX;i++)
	{lowcost[i][0]=-1;adjecent[i]=st;}//初始化时每个节点的邻接点均设为st出发点
	for(i=0;i<MAX;i++)
		lowcost[i][1]=AdjMtx[st][i];
	lowcost[st][0]=0;//表示已经被选中

	int v=1;//控制结点加入个数

	while(v<MAX)
	{
		int tempV,preV;//tempV存放需要加入的结点 ,tempV的前驱是preV
		int min=INF;
		for (i=0;i<MAX;i++)
		{
			if(lowcost[i][0]==-1&&lowcost[i][1]<min)
			{
				min=lowcost[i][1];
				tempV=i;
			}
		}
		st=tempV;
		lowcost[st][0]=0;
		cout<<adjecent[st]<<"---->"<<st<<"edge added!"<<endl;
		for (i=0;i<MAX;i++)
		{
			if(lowcost[i][0]==-1&&AdjMtx[st][i]<lowcost[i][1])
			{lowcost[i][1]=AdjMtx[st][i];adjecent[i]=st;}
		}
		v++;
	}
}
void main()
{
	prim(3);
}

  

时间: 2024-10-10 10:25:05

prim算法的相关文章

最小生成树问题(prim算法)POJ-1258 Agri-Net

/* 这个题很水,但是,莫名其妙runtime error一晚上,重写了一遍就又没了,很伤心! 题意很简单,大致为n个村庄,连光缆,要求连上所有村庄的长度最短. 输入n,接着是n*n的矩阵,直接用prim算法写就行: */ #include<iostream> #include<cstdlib> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath>

杭电1162--Eddy&#39;s picture(Prim()算法)

Eddy's picture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8070    Accepted Submission(s): 4084 Problem Description Eddy begins to like painting pictures recently ,he is sure of himself to b

hihocoder1097最小生成树(prim算法)

prim算法描述: prim算法的思想和代码都跟dijkstra算法非常相似. 在dijkstra算法中,我们用每次取出未标记集合中到源点最近的点进行标记并更新其邻接点到源点的距离:当d[x]+w<d[y]时更新d[y]=d[x]+w. 而在prim算法中,我们只需要对dijkstra算法稍作改动即可,即只需要改变一下更新操作:当w<d[y]时更新d[y]=w,此时d[y]的含义是节点y连接到最小生成树的边的最小取值.也就是说,从图中某个节点发出了边可能有若干条,而最终将该节点连接到最小生成树

prim算法模板

var g:array[1..10,1..10] of longint; d:array[1..10] of longint; f:array[1..10] of boolean; procedure prim; var i,j,k,min:longint; begin fillchar(g,sizeof(g),0); fillchar(f,sizeof(f),0); for i:=1 to n do d[i]:=g[1,i]; f[1]:=true; for i:=2 to n do begi

最小生成树(prim算法,Kruskal算法)c++实现

1.生成树的概念 连通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树. 生成树是连通图的极小连通子图.所谓极小是指:若在树中任意增加一条边,则将出现一个回路:若去掉一条边,将会使之变成非连通图. 生成树各边的权值总和称为生成树的权.权最小的生成树称为最小生成树. 2.最小生成树的性质用哲学的观点来说,每个事物都有自己特有的性质,那么图的最小生成树也是不例外的.按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点.n-1 条边. 3.构造最小生成树,要解决以下两个问题

Prim算法(一)之 C语言详解

本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 普里姆算法介绍 普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所

HDU 5253 Prim算法

http://acm.hdu.edu.cn/showproblem.php?pid=5253 Prim算法是 1.每次选出 (已经选出的)点集 能够连接 边权值最小的点 2.使用新找出的点能带来的新的更小的边权,来更新旧的较大的边权 3.重复,直到连接所有点 的贪心算法 使用优先权队列优化 查找 边权值最小的点 的步骤. #include <stdio.h> #include <string.h> #include <stdlib.h> #include <ios

最小生成树--prim算法

一个无向图G的最小生成树就是由该图的那些连接G的所有顶点的边构成的树,且其总价值最低,因此,最小生成树存在的充分必要条件为图G是连通的,简单点说如下: 1.树的定义:有n个顶点和n-1条边,没有回路的称为树 生成树的定义:生成树就是包含全部顶点,n-1(n为顶点数)条边都在图里就是生成树 最小:指的是这些边加起来的权重之和最小 2.判定条件:向生成树中任加一条边都一定构成回路 充分必要条件:最小生成树存在那么图一定是连通的,反过来,图是连通的则最小生成树一定存在 上图的红色的边加上顶点就是原图的

[迷宫中的算法实践]迷宫生成算法&mdash;&mdash;Prim算法

       普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场合,普里姆

最小生成树第三弹ps:prim算法

prim算法的基本思想: 从连通网N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,v),将其顶点加入到生成树的顶点集合U中.以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合U中.如此继续下去,直到网中的所有顶点都加入到生成树顶点集合U中为止. 由于和dijkstra差不多,所以用邻接矩阵存储: 模板(低智商的我果断的把他取了个名字==) for (i = 1; i <= n; i++) for (j = 1; j