poj 1113 凸包周长

Wall

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 33888   Accepted: 11544

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King‘s castle. The King was so greedy, that he would not listen to his Architect‘s proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King‘s requirements.

The task is somewhat simplified by the fact, that the King‘s castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle‘s vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King‘s castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle‘s vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King‘s requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628
/*
poj 1113 凸包周长

给你一些点组成的城堡,要求用最少的墙围起来,且墙距离城堡有一定距离
当城堡有转角时,毫无疑问墙建成圆弧的最合适
假设一个转角内角为x,那么圆弧的角度就是180-x度
所以最终形成圆弧角度就是 n*180 - 多边形内角和 = 360
对于凹陷下去的地方而言, 很明显直线更短. 所以求个凸包
ans=凸包周长+圆周长

hhh-2016-05-06 21:51:48
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson  (i<<1)
#define rson  ((i<<1)|1)

using namespace std;
const int  maxn = 40010;
double PI = 3.1415926;
double eps = 1e-8;
int n,m;

int sgn(double x)
{
    if(fabs(x) < eps) return 0;
    if(x < 0)
        return -1;
    else
        return 1;
}

struct Point
{
    double x,y;
    Point() {}
    Point(double _x,double _y)
    {
        x = _x,y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x-b.x,y-b.y);
    }
    double operator ^(const Point &b)const
    {
        return x*b.y-y*b.x;
    }
    double operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
};

struct Line
{
    Point s,t;
    Line() {}
    Line(Point _s,Point _t)
    {
        s = _s;
        t = _t;
    }
    pair<int,Point> operator &(const Line&b)const
    {
        Point res = s;
        if( sgn((s-t) ^ (b.s-b.t)) == 0)   //通过叉积判断
        {
            if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
                return make_pair(0,res);
            else
                return make_pair(1,res);
        }
        double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
        res.x += (t.x-s.x)*ta;
        res.y += (t.y-s.y)*ta;
        return make_pair(2,res);
    }
};
Point lis[maxn];
int Stack[maxn],top;

double dist(Point a,Point b)
{
    return sqrt((a-b)*(a-b));
}

bool cmp(Point a,Point b)
{
    double t = (a-lis[0])^(b-lis[0]);
    if(sgn(t) == 0)
    {
        return dist(a,lis[0]) <= dist(b,lis[0]);
    }
    if(sgn(t) < 0)
        return false;
    else
        return true;
}

void Graham(int n)
{
    Point p;
    int k = 0;
    p = lis[0];
    for(int i = 1; i < n; i++)
    {
        if(p.y > lis[i].y || (p.y == lis[i].y && p.x > lis[i].x))
            p = lis[i],k = i;
    }
    swap(lis[0],lis[k]);

    sort(lis+1,lis+n,cmp);
    if(n == 1)
    {
        top = 1;
        Stack[0] = 0;
        return ;
    }
    if(n == 2)
    {
        top = 2,Stack[0] = 0,Stack[1] = 1;
        return ;
    }
    Stack[0] = 0;
    Stack[1] = 1;
    top = 2;
    for(int i = 2; i < n; i++)
    {
        while(top > 1 && sgn((lis[Stack[top-1]]-lis[Stack[top-2]])
                             ^ (lis[i]-lis[Stack[top-2]])) <= 0)
            top --;
        Stack[top++] = i;
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    int n;
    double len;
    while(scanf("%d%lf",&n,&len) != EOF)
    {
        for(int i = 0; i < n; i++)
        {
            scanf("%lf%lf",&lis[i].x,&lis[i].y);
        }
        Graham(n);
        double ans = 0;
        //cout << top <<endl;
        for(int i = 0; i < top; i++)
        {
            if(i == top-1)
                ans += dist(lis[Stack[i]],lis[Stack[0]]);
            else
                ans += dist(lis[Stack[i]],lis[Stack[i+1]]);
        }
        ans +=  2*PI*len;
        printf("%.0f\n",ans);
    }
    return 0;
}

  

时间: 2024-11-06 17:39:40

poj 1113 凸包周长的相关文章

POJ 1113 凸包模板题

上模板. #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <utility> #include <stack> #include <queue> #include <map> #include

POJ 1113 Wall(Graham求凸包周长)

题目链接 题意 : 求凸包周长+一个完整的圆周长. 因为走一圈,经过拐点时,所形成的扇形的内角和是360度,故一个完整的圆. 思路 : 求出凸包来,然后加上圆的周长 1 #include <stdio.h> 2 #include <string.h> 3 #include <iostream> 4 #include <cmath> 5 #include <algorithm> 6 7 const double PI = acos(-1.0) ;

Wall POJ - 1113 (凸包周长)

题目链接:https://vjudge.net/problem/POJ-1113 题目: 思路:就是求凸包周长加上一个圆周长 原文地址:https://www.cnblogs.com/Vampire6/p/12234411.html

poj 1113 Wall(标准的凸包果题)

题目链接:http://poj.org/problem?id=1113 Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build

POJ 1113 Wall (凸包)

题目地址:POJ 1113 先求出凸包的周长,然后剩下的弧合起来一定是个半径为l的圆,然后再加上以l为半径的圆的周长即可. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h> #include <

poj 1113 Wall (凸包模板题)

Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 32808   Accepted: 11137 Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he w

poj 1113 Wall 凸包的应用

题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: 1 #include<iostream> 2 #include<algorithm> 3 #include<cstdio> 4 #include<cmath> 5 using namespace std; 6 int m,n; 7 struct p 8 { 9 double x,y; 10 friend i

POJ 1113 Wall 凸包 裸

LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham算法极角序求凸包会有点小问题,最好用水平序比较好.或者用Melkman算法 /** @Date : 2017-07-13 14:17:05 * @FileName: POJ 1113 极角序求凸包 基础凸包.cpp * @Platform: Windows * @Author : Lweleth (

【POJ 1113】 Wall (凸包)

[POJ 1113] Wall 给n个点 连出一个凸包 然后在凸包外筑墙 要求墙与凸包每一处的距离都>=l 问需要建的最短的墙长 乍一看挺难 画画图就能看出来 凸包外建距离l的墙 其实就是在凸包每个顶点处 以顶点为圆心 做半径为l的弧 做到两侧半径与点的两边平行即可 然后把这些弧都用直线衔接 就是最短墙长 这样还不好求 呢把弧拿出来呢 其实就相当于把整个凸包作为一个点 以该点为圆心 l为半径做了个圆 这样弧的总长就是2*PI*l 那剩下的就是直线 平移下来其实就是凸包的周长 然后卷包裹法或者扫描