MapReduce shuffle阶段详解

Mapreduce中,Shuffle过程是Mapreduce的核心,它分布在Mapreduce的map阶段和reduce阶段,共可分为6个详细的阶段:

1).Collect阶段:将MapTask的结果输出到默认大小为100M的MapOutputBuffer内部环形内存缓冲区,保存
的是key/value,Partition分区

2).Spill阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘
之前需要对数据进行一次排序的操作,先是对partition分区号进行排序,再对key排序,如果配置了
combiner,还会将有相同分区号和key的数据进行排序,如果有压缩设置,则还会对数据进行压缩操作。

3).Combiner阶段:等MapTask任务的数据处理完成之后,会对所有map产生的数据结果进行一次合并操作,
以确保一个MapTask最终只产生一个中间数据文件。

4).Copy阶段:当整个MapReduce作业的MapTask所完成的任务数据占到MapTask总数的5%时,JobTracker就会
调用ReduceTask启动,此时ReduceTask就会默认的启动5个线程到已经完成MapTask的节点上复制一份属于自
己的数据,这些数据默认会保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写
到磁盘之上。

5).Merge阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程对内存中和本地中的数据文件进行
合并操作。

6).Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask阶段已经对数据进行了局部的排序,
ReduceTask只需做一次归并排序就可以保证Copy的数据的整体有效性。

如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。
如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【关注我】。
如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【飞翔的小伟】,谢谢!

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

时间: 2025-01-04 05:28:42

MapReduce shuffle阶段详解的相关文章

MapReduce Shuffle过程详解

Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce,Shuffle是必须要了解的.我看过很多相关方面的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越乱.前端时间在做MapReduce job性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有

MapReduce阶段源码分析以及shuffle过程详解

MapReducer工作流程图: 1. MapReduce阶段源码分析 1)客户端提交源码分析 解释:   - 判断是否打印日志   - 判断是否使用新的API,检查连接   - 在检查连接时,检查输入输出路径,计算切片,将jar.配置文件复制到HDFS   - 计算切片时,计算最小切片数(默认为1,可自定义)和最大切片数(默认是long的最大值,可以自定义)   - 查看给定的是否是文件,如果是否目录计算目录下所有文件的切片   - 通过block大小和最小切片数.最大切片数计算出切片大小  

MapReduce和spark的shuffle过程详解

面试常见问题,必备答案. 参考:https://blog.csdn.net/u010697988/article/details/70173104 mapReducehe和Spark之间的最大区别是前者较偏向于离线处理,而后者重视实效性,下面主要介绍mapReducehe和Spark两者的shuffle过程. MapReduce的Shuffle过程 MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于

Hadoop新MapReduce框架Yarn详解

简介 本文介绍了Hadoop自0.23.0版本后新的MapReduce框架(Yarn)原理,优势,运行机制和配置方法等,着重介绍新的yarn框架相对于原框架的差异及改进,并通过Demo示例详细介绍了在新的Yarn框架下搭建和开发Hadoop程序的方法.读者通过本文中新旧Hadoop MapReduce框架的对比,更深刻理解新的yarn框架技术与那里和设计思想,文中的Demo代码经过微小修改既可用于用户基于Hadoop新框架的实际生产环境. Hadoop MapReduceV2(Yarn)框架简介

Hadoop 新 MapReduce 框架 Yarn 详解

原 Hadoop MapReduce 框架的问题 对于业界的大数据存储及分布式处理系统来说,Hadoop 是耳熟能详的卓越开源分布式文件存储及处理框架,对于 Hadoop 框架的介绍在此不再累述,读者可参考 Hadoop 官方简介.使用和学习过老 Hadoop 框架(0.20.0 及之前版本)的同仁应该很熟悉如下的原 MapReduce 框架图: 图 1.Hadoop 原 MapReduce 架构 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobCli

Hadoop MapReduce执行过程详解(带hadoop例子)

https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中.整个流程如图: Mapper任务的执行过程详解 每个Mapper任

Hadoop学习之MapReduce执行过程详解

转自:http://my.oschina.net/itblog/blog/275294 分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中.整个流程如图: Mapper任务的执行过程详解 每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我

Hadoop之Shuffle机制详解

1.什么是Shuffle机制 1.1)在Hadoop中数据从Map阶段传递给Reduce阶段的过程就叫Shuffle,Shuffle机制是整个MapReduce框架中最核心的部分. 1.2)Shuffle翻译成中文的意思为:洗牌.发牌(核心机制:数据分区.排序.缓存) 2.Shuffle的作用范围 一般把数据从Map阶段输出到Reduce阶段的过程叫Shuffle,所以Shuffle的作用范围是Map阶段数据输出到Reduce阶段数据输入这一整个中间过程! 3.Shuffle图解 上图是官方对S

MapReduce工作机制详解

1.MapTask工作机制整个Map阶段流程大体如上图所示.简单概述:input File通过split被逻辑切分为多个split文件,通过Record按行读取内容给map(用户自己实现的)进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候需要将缓冲区的数据以一个临时文件的方式存放到磁盘,当整个map task结束后再对