理解contextmanager

同事在查看网络问题导致虚拟机状态一至pause时,在一段代码(见以下)处产生了疑惑。问我,我也是一头雾水。后同事找到参考文章(1),算是了解了个大概。而我对contextmanager的工作产生了兴趣,决定再稍稍弄清楚一点。

疑问代码:

with self.virtapi.wait_for_instance_event(
                    instance, events, deadline=timeout,
                    error_callback=self._neutron_failed_callback):
                self.plug_vifs(instance, network_info)
                self.firewall_driver.setup_basic_filtering(instance,
                                                           network_info)
                self.firewall_driver.prepare_instance_filter(instance,
                                                             network_info)
                domain = self._create_domain(
                    xml, instance=instance,
                    launch_flags=launch_flags,
                    power_on=power_on)

                self.firewall_driver.apply_instance_filter(instance,
                                                           network_info)

    @contextlib.contextmanager
    def wait_for_instance_event(self, instance, event_names, deadline=300,
                                error_callback=None):
        """Plan to wait for some events, run some code, then wait.

        This context manager will first create plans to wait for the
        provided event_names, yield, and then wait for all the scheduled
        events to complete.

        Note that this uses an eventlet.timeout.Timeout to bound the
        operation, so callers should be prepared to catch that
        failure and handle that situation appropriately.

        If the event is not received by the specified timeout deadline,
        eventlet.timeout.Timeout is raised.

        If the event is received but did not have a ‘completed‘
        status, a NovaException is raised.  If an error_callback is
        provided, instead of raising an exception as detailed above
        for the failure case, the callback will be called with the
        event_name and instance, and can return True to continue
        waiting for the rest of the events, False to stop processing,
        or raise an exception which will bubble up to the waiter.

        :param:instance: The instance for which an event is expected
        :param:event_names: A list of event names. Each element can be a
                            string event name or tuple of strings to
                            indicate (name, tag).
        :param:deadline: Maximum number of seconds we should wait for all
                         of the specified events to arrive.
        :param:error_callback: A function to be called if an event arrives
        """
        if error_callback is None:
            error_callback = self._default_error_callback
        events = {}
        for event_name in event_names:
            if isinstance(event_name, tuple):
                name, tag = event_name
                event_name = external_event_obj.InstanceExternalEvent.make_key(
                    name, tag)
            events[event_name] = (
                self._compute.instance_events.prepare_for_instance_event(
                    instance, event_name))
        yield
        with eventlet.timeout.Timeout(deadline):
            for event_name, event in events.items():
                actual_event = event.wait()
                if actual_event.status == ‘completed‘:
                    continue
                decision = error_callback(event_name, instance)
                if decision is False:
                    break

yield在此有何用处? 为何需要yield呢?

第一个问题,可以从(1)中窥见一斑:

”任何在yield之前的内容都可以看做在代码块执行前的操作,而任何yield之后的操作都可以放在exit函数中。wait_for_instance_event ()就是

先准备计划等待一些event, 然后运行_create_domain_and_network()中提到的代码块,同时开始等待,等待超时后调用error_callback,

详细介绍在代码的注释中说的很清楚。“

至于为何需要yield呢?我们查看contextmanager的定义:

def contextmanager(func):
    """@contextmanager decorator.

    Typical usage:

        @contextmanager
        def some_generator(<arguments>):
            <setup>
            try:
                yield <value>
            finally:
                <cleanup>

    This makes this:

        with some_generator(<arguments>) as <variable>:
            <body>

    equivalent to this:

        <setup>
        try:
            <variable> = <value>
            <body>
        finally:
            <cleanup>

    """
    @wraps(func)
    def helper(*args, **kwds):
        return GeneratorContextManager(func(*args, **kwds))
    return helper

从用法上看,的确与上边引文描述的调用顺序一般。

略过@wraps装饰器(使用functools的partial实现对函数的装饰,以后会进一步学习)。继续深入:

class GeneratorContextManager(object):
    """Helper for @contextmanager decorator."""

    def __init__(self, gen):
        self.gen = gen

    def __enter__(self):
        try:
            return self.gen.next()
        except StopIteration:
            raise RuntimeError("generator didn‘t yield")

    def __exit__(self, type, value, traceback):
        if type is None:
            try:
                self.gen.next()
            except StopIteration:
                return
            else:
                raise RuntimeError("generator didn‘t stop")
        else:
            if value is None:
                # Need to force instantiation so we can reliably
                # tell if we get the same exception back
                value = type()
            try:
                self.gen.throw(type, value, traceback)
                raise RuntimeError("generator didn‘t stop after throw()")
            except StopIteration, exc:
                # Suppress the exception *unless* it‘s the same exception that
                # was passed to throw().  This prevents a StopIteration
                # raised inside the "with" statement from being suppressed
                return exc is not value
            except:
                # only re-raise if it‘s *not* the exception that was
                # passed to throw(), because __exit__() must not raise
                # an exception unless __exit__() itself failed.  But throw()
                # has to raise the exception to signal propagation, so this
                # fixes the impedance mismatch between the throw() protocol
                # and the __exit__() protocol.
                #
                if sys.exc_info()[1] is not value:
                    raise

从代码上看,在调用wait_for_instance_event方法时,contextmanager装饰器会先调用该方法,将返回的结果作为参数,传递给GeneratorContextManager类进行初始化。GeneratorContextManager类定义了__enter__和__exit__方法,并在其中调用了self.gen.next()方法。这里,我又产生了疑问:1、wait_for_instance_event方法返回值是什么?它应该支持调用next()方法。2、__enter__是在什么时候调用的?

先来回答问题2,我引用了参考文章(2)的一段话:

基本语法和工作原理

with 语句的语法格式如下:

清单 1. with 语句的语法格式
    with context_expression [as target(s)]:
        with-body

这里 context_expression 要返回一个上下文管理器对象,该对象并不赋值给 as 子句中的 target(s) ,如果指定了 as 子句的话,会将上下文管理器的 __enter__() 方法的返回值赋值给 target(s)。target(s) 可以是单个变量,或者由“()”括起来的元组(不能是仅仅由“,”分隔的变量列表,必须加“()”)。

Python 对一些内建对象进行改进,加入了对上下文管理器的支持,可以用于 with 语句中,比如可以自动关闭文件、线程锁的自动获取和释放等。假设要对一个文件进行操作,使用 with 语句可以有如下代码:

清单 2. 使用 with 语句操作文件对象
    with open(r‘somefileName‘) as somefile:
        for line in somefile:
            print line
            # ...more code

这里使用了 with 语句,不管在处理文件过程中是否发生异常,都能保证 with 语句执行完毕后已经关闭了打开的文件句柄。如果使用传统的 try/finally 范式,则要使用类似如下代码:

清单 3. try/finally 方式操作文件对象
    somefile = open(r‘somefileName‘)
    try:
        for line in somefile:
            print line
            # ...more code
    finally:
        somefile.close()

比较起来,使用 with 语句可以减少编码量。已经加入对上下文管理协议支持的还有模块 threading、decimal 等。

PEP 0343 对 with 语句的实现进行了描述。with 语句的执行过程类似如下代码块:

清单 4. with 语句执行过程
    context_manager = context_expression
    exit = type(context_manager).__exit__
    value = type(context_manager).__enter__(context_manager)
    exc = True   # True 表示正常执行,即便有异常也忽略;False 表示重新抛出异常,需要对异常进行处理
    try:
        try:
            target = value  # 如果使用了 as 子句
            with-body     # 执行 with-body
        except:
            # 执行过程中有异常发生
            exc = False
            # 如果 __exit__ 返回 True,则异常被忽略;如果返回 False,则重新抛出异常
            # 由外层代码对异常进行处理
            if not exit(context_manager, *sys.exc_info()):
                raise
    finally:
        # 正常退出,或者通过 statement-body 中的 break/continue/return 语句退出
        # 或者忽略异常退出
        if exc:
            exit(context_manager, None, None, None)
        # 缺省返回 None,None 在布尔上下文中看做是 False
  1. 执行 context_expression,生成上下文管理器 context_manager
  2. 调用上下文管理器的 __enter__() 方法;如果使用了 as 子句,则将 __enter__() 方法的返回值赋值给 as 子句中的 target(s)
  3. 执行语句体 with-body
  4. 不管是否执行过程中是否发生了异常,执行上下文管理器的 __exit__() 方法,__exit__() 方法负责执行“清理”工作,如释放资源等。如果执行过程中没有出现异常,或者语句体中执行了语句 break/continue/return,则以 None 作为参数调用 __exit__(None, None, None) ;如果执行过程中出现异常,则使用 sys.exc_info 得到的异常信息为参数调用 __exit__(exc_type, exc_value, exc_traceback)
  5. 出现异常时,如果 __exit__(type, value, traceback) 返回 False,则会重新抛出异常,让with 之外的语句逻辑来处理异常,这也是通用做法;如果返回 True,则忽略异常,不再对异常进行处理

结合引文中的清单1和清单4,可以看出,是先执行了self.virtapi.wait_for_instance_event(...)中的代码,并将返回值赋给context_manager,稍后保存了context_manager类的__exit__方法,然后执行context_manager类的__enter__方法,再执行with_body,最后根据情况执行__exit__。

这里的__enter__方法,实际上就是去调用wait_for_...方法的返回值的next方法。wait_for_...方法的返回值是什么?是yield时给函数的返回值吗?它为何竟能支持next方法呢?

在回答这个问题之前,我们先来一段试验代码:

>>> def gens(N):
...   for i in range(N):
...     yield i**2
...
>>> gens(3)
<generator object gens at 0x7fb3ac98ec30>
>>> s = gens(3)
>>> s
<generator object gens at 0x7fb3ac98ee60>
>>> s.next()
0
>>> s.next()
1
>>> s.next()
4
>>> s.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> dir(s)
[‘__class__‘, ‘__delattr__‘, ‘__doc__‘, ‘__format__‘, ‘__getattribute__‘, ‘__hash__‘, ‘__init__‘, ‘__iter__‘, ‘__name__‘, ‘__new__‘, ‘__reduce__‘, ‘__reduce_ex__‘, ‘__repr__‘, ‘__setattr__‘, ‘__sizeof__‘, ‘__str__‘, ‘__subclasshook__‘, ‘close‘, ‘gi_code‘, ‘gi_frame‘, ‘gi_running‘, ‘next‘, ‘send‘, ‘throw‘]

>>> def gent(N):
...   for i in range(N):
...     i = i**2
...
>>> gent(3)
>>> print gent(3)
None
>>> dir(gent(3))
[‘__class__‘, ‘__delattr__‘, ‘__doc__‘, ‘__format__‘, ‘__getattribute__‘, ‘__hash__‘, ‘__init__‘, ‘__new__‘, ‘__reduce__‘, ‘__reduce_ex__‘, ‘__repr__‘, ‘__setattr__‘, ‘__sizeof__‘, ‘__str__‘, ‘__subclasshook__‘]

对比上述两个方法,可以看出,加入yield之后,函数的返回,实际上不是一个值,而是一个generator object(生成器对象)。这个对象,本身是支持next方法的。这就回答了上面问题1。

yield究竟是什么鬼?

以下内容来自Mark Lutz的《learning Python》:

Python的迭代协议:可迭代的对象定义了一个__next__方法,它要么返回迭代中的下一项,或者引发一个特殊的StopIteration异常来终止迭代。

要支持这一协议,函数包含一条yield语句,该语句特别编译为生成器。当调用时,它们返回一个迭代器对象,该对象支持用一个名为__next__的自动创建的方法来继续执行的接口。生成器函数也可能有一条return语句,总是在def语句块的末尾,直接终止值的生成。从技术上讲,可以在任何常规函数退出执行之后,引发一个StopIteration异常来实现。从调用者的角度来看,生成器的__next__方法继续函数并且运行到下一个yield结果返回或引发一个StopIteration异常。

直接效果就是生成器函数,编写为包含yield语句的def语句,自动支持迭代协议,并且由此可能用在任何迭代环境中以随着时间并根据需要产生结果。

截止目前,大致知道了本文开始两段代码的执行顺序。可惜的是,代码的内容依然未懂。下次再看。

如有错误之处,敬请指正。

参考文章:

(1)http://blog.csdn.net/epugv/article/details/44872583

(2)http://www.ibm.com/developerworks/cn/opensource/os-cn-pythonwith/index.html

(3)https://docs.python.org/2/library/contextlib.html

时间: 2024-11-14 03:06:14

理解contextmanager的相关文章

深入理解 Python 中的上下文管理器

提示:前面的内容较为基础,重点知识在后半段. with 这个关键字,对于每一学习Python的人,都不会陌生. 操作文本对象的时候,几乎所有的人都会让我们要用 with open ,这就是一个上下文管理的例子.你一定已经相当熟悉了,我就不再废话了. with open('test.txt') as f: print f.readlines() 什么是上下文管理器? 基本语法 with EXPR as VAR: BLOCK 先理清几个概念 1. 上下文表达式:with open('test.txt

理解Python的上下文管理器

上下文管理器(context manager)是 Python 编程中的重要概念,用于规定某个对象的使用范围.一旦进入或者离开该使用范围,会有特殊操作被调用 (比如为对象分配或者释放内存).它的语法形式是with...as... 为了确保一些系统资源得以正确释放,我们经常会用到 try ... excepte ... finally 语句.如: try: f = open('somefile') for line in f: print(line) except Exception as e:

Python——深入理解urllib、urllib2及requests(requests不建议使用?)

深入理解urllib.urllib2及requests            python Python 是一种面向对象.解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年,Python 源代码同样遵循 GPL(GNU General Public License)协议[1] .Python语法简洁而清晰,具有丰富和强大的类库. urllib and urllib2 区别 urllib和urllib2模块都做与请求URL相关的操作,但

关于SVM数学细节逻辑的个人理解(三) :SMO算法理解

第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t.   这个优化问题的. 虽然这个优化问题只剩下了α这一个变量,但是别忘了α是一个向量,有m个αi等着我们去优化,所以还是很麻烦,所以大神提出了SMO算法来解决这个优化问题. 关于SMO最好的资料还是论文<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector

2.2 logistic回归损失函数(非常重要,深入理解)

上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习来调整参数,要给出一个含有m和训练样本的训练集 很自然的,希望通过训练集找到参数w和b,来得到自己得输出 对训练集当中的值进行预测,将他写成y^(I)我们希望他会接近于训练集当中的y^(i)的数值 现在来看一下损失函数或者叫做误差函数 他们可以用来衡量算法的运行情况 可以定义损失函数为y^和y的差,或者他们差的平方的一半,结果表明你可能这样做,但是实际当中

理解信息管理系统

1.信息与数据的区别是什么? 数据是记录客观事物,可鉴别的符号,而信息是具有关联性和目的性的结构化,组织化的数据.数据经过处理仍是数据,而信息经过加工可以形成知识.处理数据是为了便于更好的解释,只有经过解释,数据才有意义,才可以成为信息.可以说信息是经过加工以后,对客观世界产生影响的数据. 2.信息与知识的区别是什么? 信息是具有关联性和目的性的结构化,组织化的数据,知识是对信息的进一步加工和应用,是对事物内在规律和原理的认识.信息经过加工可以形成知识. 3.举一个同一主题不同级别的数据.信息.

深度理解div+css布局嵌套盒子

1. 网页布局概述 网页布局的概念是把即将出现在网页中的所有元素进行定位,而CSS网页排版技术有别于传统的网页排版方法,它将页面首先在整体上使用<div>标记进行分块,然后对每个快进行CSS定位以及设置显示效果,最后在每个块中添加相应的内容.利用CSS排版方法更容易地控制页面每个元素的效果,更新也更容易,甚至页面的拓扑结构也可以通过修改相应的CSS属性来重新定位.  2. 盒子模型 盒子模型是CSS控制页面元素的一个重要概念,只有掌握了盒子模型,才能让CSS很好地控制页面上每一个元素,达到我们

深入理解Java:类加载机制及反射

一.Java类加载机制 1.概述 Class文件由类装载器装载后,在JVM中将形成一份描述Class结构的元信息对象,通过该元信息对象可以获知Class的结构信息:如构造函数,属性和方法等,Java允许用户借由这个Class相关的元信息对象间接调用Class对象的功能. 虚拟机把描述类的数据从class文件加载到内存,并对数据进行校验,转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制. 2.工作机制 类装载器就是寻找类的字节码文件,并构造出类在JVM内部表示

八幅漫画理解使用 JSON Web Token 设计单点登录系统

原文出处: John Wu 上次在<JSON Web Token – 在Web应用间安全地传递信息>中我提到了JSON Web Token可以用来设计单点登录系统.我尝试用八幅漫画先让大家理解如何设计正常的用户认证系统,然后再延伸到单点登录系统. 如果还没有阅读<JSON Web Token – 在Web应用间安全地传递信息>,我强烈建议你花十分钟阅读它,理解JWT的生成过程和原理. 用户认证八步走 所谓用户认证(Authentication),就是让用户登录,并且在接下来的一段时