【蓝桥杯】历届试题 幸运数

  历届试题 幸运数  

时间限制:1.0s   内存限制:256.0MB

问题描述

幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。

首先从1开始写出自然数1,2,3,4,5,6,....

1 就是第一个幸运数。

我们从2这个数开始。把所有序号能被2整除的项删除,变为:

1 _ 3 _ 5 _ 7 _ 9 ....

把它们缩紧,重新记序,为:

1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...

此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...)

最后剩下的序列类似:

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...

输入格式

输入两个正整数m n, 用空格分开 (m < n < 1000*1000)

输出格式

程序输出 位于m和n之间的幸运数的个数(不包含m和n)。

样例输入1

1 20

样例输出1

5

样例输入2

30 69

样例输出2

8

Java源代码:

 1 import java.util.Scanner;
 2
 3 public class Main {
 4
 5     public static void main(String[] args) {
 6         Scanner in = new Scanner(System.in);
 7         int count = 0;
 8         int m = in.nextInt();
 9         int n = in.nextInt();
10         int[] a = new int[n];
11         // 初始化
12         for (int i = 0; i < a.length; i++)
13             a[i] = i * 2 + 1;
14         // 获取1到n的幸运数
15         getLuckNumArr(a, 1, n);
16         // 统计
17         for (int i = 0; i < n && a[i] <= n; i++) {
18             if (a[i] > m && a[i] < n)
19                 count++;
20         }
21         System.out.println(count);
22     }
23
24     static void getLuckNumArr(int[] a, int start, int end) {
25         int k = start;
26         int x = a[start];
27         for (int i = start; i < end; i++) {
28             if ((i + 1) % x != 0) {
29                 a[k] = a[i];
30                 k++;
31             }
32         }
33         if (x < end) {
34             getLuckNumArr(a, start + 1, end);
35         }
36     }
37 }
评测点序号 评测结果 得分 CPU使用 内存使用 下载评测数据
1 正确 25.00 187ms 23.41MB 输入 输出
2 正确 25.00 140ms 23.27MB 输入 输出
3 正确 25.00 218ms 23.34MB 输入 输出
4 正确 25.00 312ms 23.61MB 输入 输出
时间: 2024-12-19 19:06:02

【蓝桥杯】历届试题 幸运数的相关文章

蓝桥杯 历届试题 题目总结

后天就是蓝桥杯省赛了,今天总结一下这段时间做的蓝桥杯历届试题,还是一个一个题目的来吧!!!!!! 1,历届试题 矩阵翻硬币 这个题目说真的,我不会,在网上看了某神牛的题解答案为 ans=sqrt(n)*sqrt(m),具体怎么证明的我也不知道 2,历届试题 兰顿蚂蚁 这个题目怎么说呢,应该是送分题,直接模拟就可以了,这里就不说了. 3, 历届试题 分糖果 这个题目好像之前在哪里做过,也是一道模拟题,弄两个数组搞一下就可以了 下面是代码 #include<bits/stdc++.h> using

蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索

问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿). 当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明. 请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝. 输入格式 输入一行3个整数,用空格分开:n

蓝桥杯-历届试题之大臣的旅费

历届试题 大臣的旅费 时间限制:1.0s   内存限制:256.0MB 问题描述 很久以前,T王国空前繁荣.为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市. 为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达.同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的. J是T国重要大臣,他巡查于各大城市之间,体察民情.所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情.他有一个钱袋,用于

蓝桥杯 历届试题 连号区间数

历届试题 连号区间数 时间限制:1.0s   内存限制:256.0MB 问题描述 小明这些天一直在思考这样一个奇怪而有趣的问题: 在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是: 如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的"连续"数列,则称这个区间连号区间. 当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助. 输入格式 第一行是一个正整数N (1 &

蓝桥杯 历届试题 带分数 DFS最容易理解版,内有解析

历届试题 带分数 时间限制:1.0s   内存限制:256.0MB 问题描述 100 可以表示为带分数的形式:100 = 3 + 69258 / 714. 还可以表示为:100 = 82 + 3546 / 197. 注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0). 类似这样的带分数,100 有 11 种表示法. 输入格式 从标准输入读入一个正整数N (N<1000*1000) 输出格式 程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数. 注意:不要求输出每个表示,

蓝桥杯 历届试题 大臣的旅费 DFS两次

历届试题 大臣的旅费 时间限制:1.0s   内存限制:256.0MB 问题描述 很久以前,T王国空前繁荣.为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市. 为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达.同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的. J是T国重要大臣,他巡查于各大城市之间,体察民情.所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情.他有一个钱袋,用于

蓝桥杯-历届试题-公式求值

历届试题 公式求值 时间限制:1.0s   内存限制:256.0MB 问题描述 输入n, m, k,输出下面公式的值. 其中C_n^m是组合数,表示在n个人的集合中选出m个人组成一个集合的方案数.组合数的计算公式如下. 输入格式 输入的第一行包含一个整数n:第二行包含一个整数m,第三行包含一个整数k. 输出格式 计算上面公式的值,由于答案非常大,请输出这个值除以999101的余数. 样例输入 313 样例输出 162 样例输入 201010 样例输出 359316 数据规模和约定 对于10%的数

蓝桥杯 历届试题 PREV-34 矩阵翻硬币

历届试题 矩阵翻硬币 时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹--所有硬币均为正面朝上. 小明想知道最开始有多少枚硬币是反面朝上的.于是,他向他的好朋友小M寻求帮助.

蓝桥杯 历届试题 剪格子 简单的DFS~~注意输入有陷阱~~

历届试题 剪格子 时间限制:1.0s   内存限制:256.0MB 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+ |10* 1|52| +--****--+ |20|30* 1| *******--+ | 1| 2| 3| +--+--+--+ 我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60. 本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等. 如果存在多种解答,请输出包含左上