转载:【高并发简单解决方案 | 靠谱崔小拽 】redis队列缓存 + mysql 批量入库 + php离线整合

需求背景:有个调用统计日志存储和统计需求,要求存储到mysql中;存储数据高峰能达到日均千万,瓶颈在于直接入库并发太高,可能会把mysql干垮

问题分析

思考:应用网站架构的衍化过程中,应用最新的框架和工具技术固然是最优选择;但是,如果能在现有的框架的基础上提出简单可依赖的解决方案,未尝不是一种提升自我的尝试。

解决:

  • 问题一:要求日志最好入库;但是,直接入库mysql确实扛不住,批量入库没有问题,done。【批量入库和直接入库性能差异参考文章
  • 问题二:批量入库就需要有高并发的消息队列,决定采用redis list 仿真实现,而且方便回滚。
  • 问题三:日志量毕竟大,保存最近30条足矣,决定用php写个离线统计和清理脚本。

done,下面是小拽的简单实现过程

一:设计数据库表和存储

  • 考虑到log系统对数据库的性能更多一些,稳定性和安全性没有那么高,存储引擎自然是只支持select insert 没有索引的archive。如果确实有update需求,也可以采用myISAM。
  • 考虑到log是实时记录的所有数据,数量可能巨大,主键采用bigint,自增即可
  • 考虑到log系统以写为主,统计采用离线计算,字段均不要出现索引,因为一方面可能会影响插入数据效率,另外读时候会造成死锁,影响写数据。

二:redis存储数据形成消息队列

由于高并发,尽可能简单,直接,上代码。

<?php
/***************************************************************************
*
* 获取到的调用日志,存入redis的队列中.
* $Id$
*
**************************************************************************/

/**
* @file saveLog.php
* @date 2015/11/06 20:47:13
* @author:cuihuan
* @version $Revision$
* @brief
*
**/

// 获取info
$interface_info = $_GET[‘info‘];

// 存入redis队列
$redis = new Redis();
$redis->connect(‘xx‘, 6379);
$redis->auth("password");

// 加上时间戳存入队列
$now_time = date("Y-m-d H:i:s");
$redis->rPush("call_log", $interface_info . "%" . $now_time);
$redis->close();

/* vim: set ts=4 sw=4 sts=4 tw=100 */
?>

三:数据定时批量入库。

定时读取redis消息队列里面的数据,批量入库。

<?php
/**
* 获取redis消息队列中的脚本,拼接sql,批量入库。
* @update 2015-11-07 添加失败消息队列回滚机制
*
* @Author:cuihuan
* 2015-11-06
* */

// init redis
$redis_xx = new Redis();
$redis_xx->connect(‘ip‘, port);
$redis_xx->auth("password");

// 获取现有消息队列的长度
$count = 0;
$max = $redis_xx->lLen("call_log");

// 获取消息队列的内容,拼接sql
$insert_sql = "insert into fb_call_log (`interface_name`, `createtime`) values ";

// 回滚数组
$roll_back_arr = array();

while ($count < $max) {
$log_info = $redis_cq01->lPop("call_log");
$roll_back_arr = $log_info;
if ($log_info == ‘nil‘ || !isset($log_info)) {
$insert_sql .= ";";
break;
}

// 切割出时间和info
$log_info_arr = explode("%",$log_info);
$insert_sql .= " (‘".$log_info_arr[0]."‘,‘".$log_info_arr[1]."‘),";
$count++;
}

// 判定存在数据,批量入库
if ($count != 0) {
$link_2004 = mysql_connect(‘ip:port‘, ‘user‘, ‘password‘);
if (!$link_2004) {
die("Could not connect:" . mysql_error());
}

$crowd_db = mysql_select_db(‘fb_log‘, $link_2004);
$insert_sql = rtrim($insert_sql,",").";";
$res = mysql_query($insert_sql);

// 输出入库log和入库结果;
echo date("Y-m-d H:i:s")."insert ".$count." log info result:";
echo json_encode($res);
echo "</br>\n";

// 数据库插入失败回滚
if(!$res){
foreach($roll_back_arr as $k){
$redis_xx->rPush("call_log", $k);
}
}

// 释放连接
mysql_free_result($res);
mysql_close($link_2004);
}

// 释放redis
$redis_cq01->close();
?>

四:离线天级统计和清理数据脚本

?php
/**
* static log :每天离线统计代码日志和删除五天前的日志
*
* @Author:cuihuan
* 2015-11-06
* */

// 离线统计
$link_2004 = mysql_connect(‘ip:port‘, ‘user‘, ‘pwd‘);
if (!$link_2004) {
die("Could not connect:" . mysql_error());
}

$crowd_db = mysql_select_db(‘fb_log‘, $link_2004);

// 统计昨天的数据
$day_time = date("Y-m-d", time() - 60 * 60 * 24 * 1);
$static_sql = "get sql";

$res = mysql_query($static_sql, $link_2004);

// 获取结果入库略

// 清理15天之前的数据
$before_15_day = date("Y-m-d", time() - 60 * 60 * 24 * 15);
$delete_sql = "delete from xxx where createtime < ‘" . $before_15_day . "‘";
try {
$res = mysql_query($delete_sql);
}catch(Exception $e){
echo json_encode($e)."\n";
echo "delete result:".json_encode($res)."\n";
}

mysql_close($link_2004);
?>

五:代码部署

主要是部署,批量入库脚本的调用和天级统计脚本,crontab例行运行。

# 批量入库脚本
*/2 * * * * /home/cuihuan/xxx/lamp/php5/bin/php /home/cuihuan/xxx/batchLog.php >>/home/cuihuan/xxx/batchlog.log

# 天级统计脚本
0 5 * * * /home/cuihuan/xxx/php5/bin/php /home/cuihuan/xxx/staticLog.php >>/home/cuihuan/xxx/staticLog.log

总结:相对于其他复杂的方式处理高并发,这个解决方案简单有效:通过redis缓存抗压,mysql批量入库解决数据库瓶颈,离线计算解决统计数据,通过定期清理保证库的大小。

转载URL: https://segmentfault.com/a/1190000004136250

时间: 2024-09-29 03:46:04

转载:【高并发简单解决方案 | 靠谱崔小拽 】redis队列缓存 + mysql 批量入库 + php离线整合的相关文章

【高并发简单解决方案】redis队列缓存 + mysql 批量入库 + php离线整合

原文地址 :https://segmentfault.com/a/1190000004136250需求背景:有个调用统计日志存储和统计需求,要求存储到mysql中:存储数据高峰能达到日均千万,瓶颈在于直接入库并发太高,可能会把mysql干垮. 问题分析 思考:应用网站架构的衍化过程中,应用最新的框架和工具技术固然是最优选择:但是,如果能在现有的框架的基础上提出简单可依赖的解决方案,未尝不是一种提升自我的尝试. 解决: 问题一:要求日志最好入库:但是,直接入库mysql确实扛不住,批量入库没有问题

高并发简单解决方案————redis队列缓存+mysql 批量入库

问题分析 思考:应用网站架构的衍化过程中,应用最新的框架和工具技术固然是最优选择:但是,如果能在现有的框架的基础上提出简单可依赖的解决方案,未尝不是一种提升自我的尝试. 解决: 问题一:要求日志最好入库:但是,直接入库mysql确实扛不住,批量入库没有问题,done.[批量入库和直接入库性能差异] 问题二:批量入库就需要有高并发的消息队列,决定采用redis list 仿真实现,而且方便回滚. 问题三:日志量毕竟大,保存最近30条足矣,决定用php写个离线统计和清理脚本. done,下面是小拽的

大数据和高并发的解决方案汇总

大数据和高并发的解决方案汇总 1.3海量数据解决方案 1.使用缓存: 使用方式:1,使用程序直接保存到内存中.主要使用Map,尤其ConcurrentHashMap. 2,使用缓存框架.常用的框架:Ehcache,Memcache,Redis等. 最关键的问题是:什么时候创建缓存,以及其失效机制. 对于空数据的缓冲:最好用一个特定的类型值来保存,以区别空数据和未缓存的两种状态. 2.数据库优化: 1,表结构优化. 2,SQL语句优化,语法优化和处理逻辑优化.可记录各语句执行时间,有针对性的分析.

PHP中大数据和高并发的解决方案汇总

大数据和高并发的解决方案汇总 1.3海量数据解决方案 1.使用缓存: 使用方式:1,使用程序直接保存到内存中.主要使用Map,尤其ConcurrentHashMap. 2,使用缓存框架.常用的框架:Ehcache,Memcache,Redis等. 最关键的问题是:什么时候创建缓存,以及其失效机制. 对于空数据的缓冲:最好用一个特定的类型值来保存,以区别空数据和未缓存的两种状态. 2.数据库优化: 1,表结构优化. 2,SQL语句优化,语法优化和处理逻辑优化.可记录各语句执行时间,有针对性的分析.

海量数据和高并发的解决方案

海量数据的解决方案 缓存和页面静态化 缓存可以使用map(ConcurrentHashMap)直接保存在内存中,或者使用缓存框架Ehcache,Memcache,Redis等.缓存最重要的是缓存的创建时间和失效机制.缓存应该把空值定义一个类型,防止查到空的缓存后频繁查找数据库查找值,缓存适用于实时性要求不高且不频繁变化的数据 页面静态化,将程序最后生成的页面保存起来,可以使用模板技术freemaker,velocity生成静态页面,也可以使用缓存服务器squid和nginx等 数据库优化 表结构

大数据和高并发的解决方案总结

现在,软件架构变得越来越复杂了,好多技术层出不穷,令人眼花缭乱,解决这个问题呢,就是要把复杂问题简单化,核心就是要把握本质. 软件刚开始的时候是为了实现功能,随着信息量和用户的增多,大数据和高并发成了软件设计必须考虑的问题,那么大数据和高并发本质是什么呢? 本质很简单,一个是慢,一个是等.两者是相互关联的,因为慢,所以要等,因为等,所以慢,解决了慢,也就解决了等,解决了等,也就解决了慢. 关键是如何解决慢和等,核心一个是短,一个是少,一个是分流. 短是指路径要短.典型的mvc结构是请求->con

高并发请求解决方案

使用场景:某平台用户搜索(search)-选择商品-下单: 本公司角色:二级代理商(在香港外包公司取得数据=美国总部一致对外公布的商品信息+香港一级代理商佣金) 业务处理流程:平台(多个)用户请求-公司请求-外包(美国+一级代理商)结果-公司处理-平台 业务流程中主要是针对用户搜索(search)带来的高并发处理进行一个记录. 解决方案: LVS+Mencache(独立一台服务器 配置32g内存,liunx) LVS分发到四台“服务器”(主要是服务器没有购买下来,用普通的4G内存台式电脑替换):

京东高并发秒杀解决方案

秒杀系统经常出现在例如淘宝京东这类购物网站,由于商品的优惠.商品数量有限制,其特点是在特定的时间会有大量用户对服务器发起请求,容易对服务器造成巨大压力.对于一个秒杀系统,需要有特殊的设计才能解决秒杀场景下的巨大流量洪峰以及数据的一致性问题. 秒杀架构设计理念: 防刷设计:设计有效的防刷机制,有效拦截无效请求,避免用户恶意调用秒杀相关接口. 数据分层校验:尽可能在不同层将无效请求拦截并过滤掉,让真正有效的请求落入后端服务. 限流: 鉴于只有少部分用户能够秒杀成功,所以要限制大部分流量,只允许少部分

[转载] 高并发系统中的常见问题

原文: http://weibo.com/p/1001603862417250608209#_loginLayer_1436489552567 本文一共分析了三个案例,分别介绍并发系统中的共享资源并发访问.计算型密集型任务缓存访问 .单一热点资源峰值流量问题和解决方案. Q1:订票系统,某车次只有一张火车票,假定有1w个人同时打开12306网站来订票,如何解决并发问题? A1: 首先介绍数据库层面的并发访问,解决的办法主要是乐观锁和悲观锁. 乐观锁 假设不会发生并发冲突,只在提交操作时检查是否违