uva 11584 Partitioning by Palindromes 线性dp

// uva 11584 Partitioning by Palindromes 线性dp
//
// 题目意思是将一个字符串划分成尽量少的回文串
//
// f[i]表示前i个字符能化成最少的回文串的数目
//
// f[i] = min(f[i],f[j-1] + 1(j到i是回文串))
//
// 这道题还是挺简单的,继续练

#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#define ceil(a,b) (((a)+(b)-1)/(b))
#define endl '\n'
#define gcd __gcd
#define highBit(x) (1ULL<<(63-__builtin_clzll(x)))
#define popCount __builtin_popcountll
typedef long long ll;
using namespace std;
const int MOD = 1000000007;
const long double PI = acos(-1.L);

template<class T> inline T lcm(const T& a, const T& b) { return a/gcd(a, b)*b; }
template<class T> inline T lowBit(const T& x) { return x&-x; }
template<class T> inline T maximize(T& a, const T& b) { return a=a<b?b:a; }
template<class T> inline T minimize(T& a, const T& b) { return a=a<b?a:b; }

const int maxn = 1008;
char s[maxn];
int f[maxn];
bool vis[maxn][maxn];
int n;

bool ok(int x,int y){
	while(x<y){
		if (s[x]==s[y]){
			x++;
			y--;
		}else {
			return false;
		}
	}
	return true;
}

void init(){
	memset(vis,0,sizeof(vis));
	scanf("%s",s+1);
	n = strlen(s+1);
	f[0]=0;
	for (int i=1;i<=n;i++)
		f[i] = i;

	for (int i=1;i<=n;i++)
		for (int j=i;j<=n;j++){
			if (ok(i,j)){
				vis[i][j]=1;
			}
		}

	for (int i=1;i<=n;i++)
		for (int j=1;j<=i;j++){
			if (vis[j][i]){
				f[i] = min(f[i],f[j-1]+1);
			}
		}
	printf("%d\n",f[n]);
}

int main() {
	int t;
	//freopen("G:\\Code\\1.txt","r",stdin);
	scanf("%d",&t);
	while(t--){
		init();
	}
	return 0;
}

时间: 2024-12-09 21:36:26

uva 11584 Partitioning by Palindromes 线性dp的相关文章

UVA - 11584 Partitioning by Palindromes[序列DP]

UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is the same written forwards and backwards. For example, ‘racecar’ is a palindrome, but ‘fastcar’ is not. A partition of a sequence of characters is a lis

uva 11584 Partitioning by Palindromes(dp)

题目链接 题意:给定一个字符串,分解成多个子串,每个子串都是回文串,问最少能分成多少个子串. 题解: dp[i]表示前i个字符串分割成最少回文子串的数量: 0<=j<=i;如果字符串从j到i是回文串,那么dp[i]=min(dp[i],dp[j-1]+1); #include <iostream> using namespace std; int dp[1005]; string s; bool ok(int j,int i) { while(j<=i) { if(s[j]!

UVa 11584 Partitioning by Palindromes【DP】

题意:给出一个字符串,问最少能够划分成多少个回文串 dp[i]表示以第i个字母结束最少能够划分成的回文串的个数 dp[i]=min(dp[i],dp[j]+1)(如果从第j个字母到第i个字母是回文串) 想不明白的还是初始化 初始化为:dp[i]=i+1, 后来= =,发现应该是这样的 从第1个字母到第i个字母最多能够划分成i+1个回文串, 所以为了求最小值,每一个初始值初始化为一个极大地值, 所以dp[i]初始化为INF也可以 1 #include<iostream> 2 #include&l

UVa 11584 Partitioning by Palindromes (简单DP)

题意:给定一个字符串,求出它最少可分成几个回文串. 析:dp[i] 表示前 i 个字符最少可分成几个回文串,dp[i] = min{ 1 + dp[j-1] | j-i是回文}. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath&g

UVa 11584 Partitioning by Palindromes

/*---UVa 11584 Partitioning by Palindromes --用dp[i]表示前i个字母划分成最小回文串的个数,则有dp[i]=min{dp[j]+1}s[j+1...i]是一个回文串,状态O(n)个 每次有O(n)个决策,而判断是否是回文串复杂度O(n),这样总的复杂度O(n^3).如果事先预处理标记一下s[i...j]是否构成 回文串,这样总的复杂度O(n^2).标记s[i...j]是否构成回文串,用vis[i][j](i<=j)来标记,if s[i]!=s[j]

区间DP UVA 11584 Partitioning by Palindromes

题目传送门 1 /* 2 题意:给一个字符串,划分成尽量少的回文串 3 区间DP:状态转移方程:dp[i] = min (dp[i], dp[j-1] + 1); dp[i] 表示前i个字符划分的最少回文串, 4 如果s[j] 到 s[i]是回文串,那么可以从dp[j-1] + 1递推过来 5 */ 6 #include <cstdio> 7 #include <cstring> 8 #include <algorithm> 9 #include <cmath&g

Uva 11584 - Partitioning by Palindromes dp

Problem H: Partitioning by Palindromes We say a sequence of characters is a palindrome if it is the same written forwards and backwards. For example, 'racecar' is a palindrome, but 'fastcar' is not. A partition of a sequence of characters is a list o

UVa 11584 Partitioning by Palindromes(DP 最少对称串)

题意  判断一个串最少可以分解为多少个对称串   一个串从左往后和从右往左是一样的  这个串就称为对沉串 令d[i]表示给定串的前i个字母至少可以分解为多少个对称串  那么对于j=1~i   若(i,j)是一个对称串  那么有  d[i]=min(d[i],d[j-1]+1)   然后就得到答案了 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N

UVa 11584 - Partitioning by Palindromes(线性DP + 预处理)

链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2631 题意: 输入一个由小写字母组成的字符串(长度不超过1000),你的任务是把它划分成尽量少的回文串.例如,racecar本身就是回文串:fastcar只能分成7个单字母的回文串,aaadbccb最少分成3个回文串:aaa, d, bccb. 分析: 设d[i]为字符0-i划分成