嵌入式Linux裸机开发(十三)——I2C通信

嵌入式Linux裸机开发(十三)——I2C通信

、IIC协议

1、IIC总线简介

I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线是一种串行数据总线,只有二根信号线,一根是双向的数据线SDA,另一根是时钟线SCL。在 I2C总线上传送的一个数据字节由八位组成。总线对每次传送的字节数没有限制,但每个字节后必须跟一位应答位。

IIC总线是一种串行总线,用于连接微控制器及其外围设备,具有以下特点:

A、两条总线线路:一条串行数据线(SDA),一条串行时钟线(SCL)

B、每个连接到总线的器件有唯一的地址(开发板内唯一)

C、传输数据的设备间是简单的主从关系

D、主机可以用作主机发送器或主机接收器

E、多主机总线,两个或多个主机同时发起数据传输时,可以通过冲突检测和仲裁来方式数据被破坏

F、串行的8位双向数据传输,位速率在标准模式下可达100kbit/s,在快速模式下可达400kbit/s,在高速模式下可达3.4Mbit/s

G、片上的滤波器可以增加干扰功能,保证数据的完整

H、连接到同一总线上的IC数量受到总线最大电容的限制

2、IIC总线结构

发送器:发送数据到总线的器件

接收器:从总线接收数据的器件

主机:发起/停止数据传输、提供时钟信号的器件

从机:被主机寻址的器件

多主机:可以有多个主机试图去控制总线,但是不会破坏数据

仲裁:当多个主机试图去控制总线时,通过仲裁可以使得只有一个主机获得总线控制权,并且它传输的信息不会被破坏

同步:多个器件同步时钟信号的过程

I2C总线通过上拉电阻接正电源。当总线空闲时,两根线均为高电平。连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL都是线“与”关系。

每个接到I2C总线上的器件都有唯一的地址。主机与其它器件间的数据传送可以是由主机发送数据到其它器件,这时主机即为发送器。由总线上接收数据的器件则为接收器。

在多主机系统中,可能同时有几个主机企图启动总线传送数据。为了避免混乱, I2C总线要通过总线仲裁,以决定由哪一台主机控制总线。

数据位的有效性规定:

I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。

二、通信时序

通信时序是通信线按照时间顺序发生的电平变化。

1、IIC总线信号类型

IIC总线在传送数据过程中共有3种类型信号:开始信号、结束信号和响应信号

A、开始信号(S):SCL为高电平时,SDA由高电平向低电平跳变,表示起始信号,开始传送数据

B、结束信号(P):SCL为高电平时,SDA由低电平向高电平跳变,表示结束信号,结束传送数据

C、响应信号(ACK):接收器在接收到8位数据后,在第9个时钟周期,拉低SDA电平。即接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传 递信号的判断。若未收到应答信号,由判断为受控单元出现故障。

始信号S和结束信号P

起始和终止信号都是由主机发出的,在起始信号产生后,总线就处于被占用的状态;在终止信号产生后,总线就处于空闲状态。

连接到I2C总线上的器件,若具有I2C总线的硬件接口,则很容易检测到起始和终止信号。对于不具备I2C总线硬件接口的有些单片机来说,为了检测起始和终止信号,必须保证在每个时钟周期内对数据线SDA采样两次。

接收器件收到一个完整的数据字节后,有可能需要完成一些其它工作,如处理内部中断服务等,可能无法立刻接收下一个字节,这时接收器件可以将SCL线拉成 低电平,从而使主机处于等待状态。直到接收器件准备好接收下一个字节时,再释放SCL线使之为高电平,从而使数据传送可以继续进行。

2、IIC总线数据传输格式

发送到SDA线上的每个字节必须是8位的,每次传输可以发送的字节数量不受限制。每一个字节必须保证是8位长度。数据传送时,先传送最高位(MSB),每一个被传送的字节后面都必须跟随一位应答位(即一帧共有9位)。

如果从机要完成一些其他功能后才能继续接收或发送,从机可以拉低SCL迫使主机进入等待状态。当从机准备好接收并释放SCL后,数据继续传输。如果主机在传输数据期间也需要完成一些其他功能叶可以拉低SCL以占住总线。

启动一个传输时,主机先发出S信号,然后发出8位数据。前7位为从机地址,第8位表示传输方向(0表示写操作,1表示读操作)。被选中的从机发出响应信号。跟着传输一系列字节及响应位。最后,主机发出P信号结束。

由于某种原因从机不对主机寻址信号应答时(如从机正在进行实时性的处理工作而无法接收总线上的数据),它必须将数据线置于高电平,而由主机产生一个终止信号以结束总线的数据传送。

如果从机对主机进行了应答,但在数据传送一段时间后无法继续接收更多的数据时,从机可以通过对无法接收的第一个数据字节的“非应答”通知主机,主机则应发出终止信号以结束数据的继续传送。

当主机接收数据时,它收到最后一个数据字节后,必须向从机发出一个结束传送的信号。这个信号是由对从机的“非应答”来实现的。然后,从机释放SDA线,以允许主机产生终止信号。

下列三种情况不会有ACK信号:

A、当从机不能响应从机地址时(从机忙于其他事无法响应IIC总线操作或这个地址没有对应从机),在第9个SCL周期内SDA线没有被拉低,即没有ACK信号。这时,主机发送一个P信号终止传输或者重新发送一个S信号开始新的传输

B、从机接收器在传输过程中不能接收更多的数据时,也不会发出ACK信号。主机意识到这点,从而发出一个P信号终止传输或者从新发送一个S信号开始新的传输

C、主机接收器在接收到最后一个字节时,也不会发出ACK信号,于是,从机发送器释放SDA线,允许主机发送P信号结束传输

数据帧格式

I2C总线上传送的数据信号是广义的,既包括地址信号,又包括真正的数据信号。

在起始信号后必须传送一个从机的地址(7位),第8位是数据的传送方向位(R/),用“0”表示主机发送数据(T),“1”表示主机接收数据(R)。每 次数据传送总是由主机产生的终止信号结束。但是,若主机希望继续占用总线进行新的数据传送,则可以不产生终止信号,马上再次发出起始信号对另一从机进行寻址。

在总线的一次数据传送过程中,可以有以下几种组合方式:

A、主机向从机发送数据,数据传送方向在整个传送过程中不变:

注:有阴影部分表示数据由主机向从机传送,无阴影部分则表示数据由从机向主机传送。

A表示应答, A表示非应答(高电平)。S表示起始信号,P表示终止信号。

B、主机在第一个字节后,立即由从机读数据

C、在传送过程中,当需要改变传送方向时,起始信号和从机地址都被重复产生一次,但两次读/写方向位正好反相。

二、IIC控制器

IIC控制器:

时钟源:PCLK_PSYS

总线控制逻辑单元:产生IIC通信时序(设置I2CCON、I2CSTAT)

移位寄存器:将数据1bit移位到SDA线

比较器+地址寄存器:作为从设备使用时将收到的地址与地址寄存器地址比较。

I2CCON:时钟配置

I2CSTAT:操作模式及条件位发送

I2CADD:IIC地址

I2CDS:数据移位器

时间: 2024-12-07 12:43:57

嵌入式Linux裸机开发(十三)——I2C通信的相关文章

嵌入式Linux裸机开发(七)——UART串口通信

嵌入式Linux裸机开发(七)--UART串口通信 一.UART串口通信简介 通用异步收发器简称UART,即UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER, 它用来传输串行数据.发送数据时, CPU 将并行数据写入UART,UAR按照一定的格式在一根电线上串 行发出:接收数据时, UART检测另一根电线的信号,将串行收集在缓冲区中, CPU 即可读取 UART 获得这些数据. 在 S5PV210中, UART提供了 4 对独立的异步串口I/O端口,

嵌入式Linux裸机开发(十五)——LCD

嵌入式Linux裸机开发(十五)--LCD 一.LCD简介 LCD(Liquid Crystal Display)是液晶显示器简称.LCD的构造是在两片平行的玻璃基板当中放置液晶盒,下基板玻璃上设置TFT(薄膜晶体管),上基板玻璃上设置彩色滤光片,通过TFT上的信号与电压改变来控制液晶分子的转动方向,从而达到控制每个像素点偏振光出射与否而达到显示目的. 1.LCD类型 按照背光源的不同,LCD可以分为CCFL和LED两种. A.CCFL 指用CCFL(冷阴极荧光灯管)作为背光光源的液晶显示器(L

嵌入式Linux裸机开发(六)——S5PV210时钟系统

嵌入式Linux裸机开发(六)--S5PV210时钟系统 一.时钟系统简介 外设工作需要一定频率的时钟,这些时钟都由系统时钟提供.系统时钟一般由外部低频24MHZ晶体振荡器通过锁相环电路PLL倍频产生.通过外部的低频晶体振荡器产生系统时钟不仅可以减少干扰还可以降低成本.外设的工作频率越高,功耗越高,越不稳定.通过关闭外设的时钟可以关闭外设. 二.时钟域 S5PV210 中包含 3 大类时钟 domain, 分别是主系统时钟 domain (简称 MSYS).显示相关的时钟 domain (DSY

嵌入式Linux裸机开发(十二)——iNand简介

嵌入式Linux裸机开发(十二)--iNand简介 一.iNand简介 iNand是SanDisk公司研发的存储芯片,可以看成SD卡或MMC卡芯片化. iNand是SanDisk公司符合eMMC协议的芯片系列名称,内部采用MLC存储颗粒.iNand接口电路设计复杂,功能完善,提供eMMC接口协议,与SoC的eMMC控制器配对通信. 相对MLC NandFlash,iNAND有以下优点: 1.提高性能 A.减少SOC的工作量,节约SOC资源. 如果使用MLC做存储,SOC要参与FLASH的坏块管理

嵌入式Linux裸机开发(十)——SD卡启动

嵌入式Linux裸机开发(十)--SD卡启动 存储设备分类: 磁存储设备:软盘.硬盘.光盘.CD.磁带 Flash:NandFlash.NorFlash 缺点:时序复杂,无坏块处理机制,接口不统一 NandFlash:MLC(可靠性差,容量大).SLC(可靠性高.容量小) 扩展卡式Flash:SD卡.MMC卡.MicroSD(TF卡) 内部为NnadFlash存储颗粒,外部封装了接口,接口标准统一.通用. 缺点:频繁使用导致卡槽接触不可靠 iNand.MoviNand.eSSD: 内部为Nand

嵌入式Linux裸机开发(一)——点亮Led

嵌入式Linux裸机开发(一)--点亮Led 开发板:友善之臂smart210 一.电路图查阅 1.底板电路图 查阅开发板底板电路图,查阅LED相关部分 LED电路工作原理: LED的正极接3.3V,负极接地时导通,LED发光. 开发板共有四颗LED,正极接3.3V,负极接开发板的LED1_LED4引脚,如果LED要点亮则需要输入低电平. 2.核心板电路图 查阅核心板电路图可知,LED1-LED4接在SoC的GPJ2_0-GPJ2_3,通过控制GPJ2_0-GPJ2_3的寄存器使对应GPIO引脚

嵌入式Linux裸机开发(五)——SDRAM初始化

嵌入式Linux裸机开发(五)--SDRAM初始化 一.SDRAM初始化流程 S5PV210有两个独立的DRAM控制器,一个最大支持512MB,一个最大支持1024MB,但两个控制器必须支持相同类型的内存. 根据三星S5PV210文档可知,DDR2类型内存的初始化流程如下: 1.提供稳压电源给内存控制器和内存芯片,内存控制器必须保持CLE在低电平,此时就会提供稳压电源.注:当CKE引脚为低电平时,XDDR2SEL应该处于高电平 2.根据时钟频率正确配置PhyControl0.ctrl_start

嵌入式Linux裸机开发(九)——S5PV210定时器

嵌入式Linux裸机开发(九)--S5PV210定时器 S5PV210内部一共有四类定时器. 一.PWM定时器 1.PWM定时简介 S5PV210内部共有5个32bit的PWM定时器.PWM定时器可以生成内部中断.PWM定时器0.1.2.3具有PWM功能,可以驱动外部I/O信号.PWM定时器4是一个无外部引脚的内部定时器.PWM 定时器使用 PCLK_PSYS 作为时钟源. 每个定时器有一个由定时器时钟驱动的32位递减计数器.递减计数器的初始值是由TCNTBn自动装载而获得的.如果递减计数器减到

嵌入式Linux裸机开发(八)——S5PV210中断处理流程

嵌入式Linux裸机开发(八)--S5PV210中断处理流程 中断是一个过程,是CPU在执行当前程序的过程中因硬件或软件的原因插入了另一段程序运行的过程.因硬件原因引起的中断过程的出现是不可预测的,即随机的,而软中断是事先安排的.引起中断的信号源称之为中断源.根据中断源的来源将中断分为外部中断和内部中断.中断源来自SoC内部(内部外设)的中断称为内部中断.中断源来自SoC外部,通过中断对应的GPIO引脚产生的中断称为外部中断.中断有四种状态: Inactive(不激活):没有被激活或挂起的中断