MapReduce中的map个数

在map阶段读取数据前,FileInputFormat会将输入文件分割成split。split的个数决定了map的个数。影响map个数(split个数)的主要因素有:

1) 文件的大小。当块(dfs.block.size)为128m时,如果输入文件为128m,会被划分为1个split;当块为256m,会被划分为2个split。

2) 文件的个数。FileInputFormat按照文件分割split,并且只会分割大文件,即那些大小超过HDFS块的大小的文件。如果HDFS中dfs.block.size设置为128m,而输入的目录中文件有100个,则划分后的split个数至少为100个。

3) splitsize的大小。分片是按照splitszie的大小进行分割的,一个split的大小在没有设置的情况下,默认等于hdfs block的大小。但    应用程序可以通过两个参数来对splitsize进行调节

InputSplit=Math.max(minSize, Math.min(maxSize, blockSize)

其中:

minSize=mapred.min.split.size

maxSize=mapred.max.split.size

我们可以在MapReduce程序的驱动部分添加如下代码:

TextInputFormat.setMinInputSplitSize(job,1024L); // 设置最小分片大小

TextInputFormat.setMaxInputSplitSize(job,1024×1024×10L); // 设置最大分片大小

总结如下:

当mapreduce.input.fileinputformat.split.maxsize > mapreduce.input.fileinputformat.split.minsize > dfs.blockSize的情况下,此时的splitSize 将由mapreduce.input.fileinputformat.split.minsize参数决定

当mapreduce.input.fileinputformat.split.maxsize > dfs.blockSize > mapreduce.input.fileinputformat.split.minsize的情况下,此时的splitSize 将由dfs.blockSize配置决定

当dfs.blockSize > mapreduce.input.fileinputformat.split.maxsize > mapreduce.input.fileinputformat.split.minsize的情况下,此时的splitSize将由mapreduce.input.fileinputformat.split.maxsize参数决定。

如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。
如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【关注我】。
如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【刘超★ljc】。

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

时间: 2024-11-08 20:05:03

MapReduce中的map个数的相关文章

Hadoop框架下MapReduce中的map个数如何控制

控制map个数的核心源码 1 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); 2 3 //getFormatMinSplitSize 默认返回1,getMinSplitSize 为用户设置的最小分片数, 如果用户设置的大于1,则为用户设置的最小分片数 4 long maxSize = getMaxSplitSize(job); 5 6 //getMaxSplitSize为用户设置的最大分片数,默认最大

MapReduce中的Map join操作

可以使用setup进行去读,吧数据读取放到一个容器中,在map段去读的时候,可以根据ID就找出数据,然后再转化回来 map端的join 适用场景,小表可以全部读取放到内存中,两个在内存中装不下的大表,不适合Map端的join操作 在一个TaskTracker中可以运行多个map任务.每个map任务是一个java进程,如果每个map从HDFS中读取相同的小表内容,就有些浪费了.使用DistributedCache,小表内容可以加载在TaskTracker的linux磁盘上.每个map运行时只需要从

MapReduce中combine、partition、shuffle的作用是什么

http://www.aboutyun.com/thread-8927-1-1.html Mapreduce在hadoop中是一个比較难以的概念.以下须要用心看,然后自己就能总结出来了. 概括: combine和partition都是函数.中间的步骤应该仅仅有shuffle! 1.combine combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,能够自己定义的. combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一

MapReduce中Map数量的控制

InputFormat这个类是用来处理Map的输入数据的,任务开始时,InputFormat先将HDFS里所有输入文件里的数据分割成逻辑上的InputSpilt对象 这里的split是HDFS中block的部分或者一整块或几个快中的数据的逻辑分割,一个split对应于一个Map,所以Map的数量是由split的数量决定的. 那么怎样去确定InputSpilt的个数呢,下面列出于split个数相关的配置参数: numSplits:来自job.getNumMapTasks(),即在job启动时用or

【Hadoop】三句话告诉你 mapreduce 中MAP进程的数量怎么控制?

1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3.如果输入中有很多小文件,依然想减少map个数,则需要将小文件merger为大文件,然后使用准则2. 2.原理与分析过程 看了很多博客,感觉没有一个说的很清楚,所以我来整理一下. 先看一下这个图 输入分片(Input Split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(i

查询字符串中字母的个数(两种实现方式1,list与set集合 2,map集合)

题目: 取出一个字符串中字母出现的次数.如:字符串:"abcde%^kka27qoq" ,输出格式为:a(2)b(1)k(2)... 第一种方式(set和list结合使用): package itheima; import java.util.ArrayList; import java.util.LinkedHashSet; import java.util.List; import java.util.Set; /** * .取出一个字符串中字母出现的次数.如:字符串:"

如何在hadoop中控制map的个数

hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map 的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素. 为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置 total_size : 输入文件整体的大小 input_file_num

mapreduce 中 map数量与文件大小的关系

学习mapreduce过程中, map第一个阶段是从hdfs 中获取文件的并进行切片,我自己在好奇map的启动的数量和文件的大小有什么关系,进过学习得知map的数量和文件切片的数量有关系,那文件的大小和切片的数量的有什么关系 ,下面我就进入Hadoop的源代码进行研究一下 文件的大小和切片的数量有什么关系. 文件获取和切片和一个InputFormat 这个抽象类有关系 ,这个抽象类 只有两个抽象的方法 分别是 第一个方法是用来过去切片,第二方法使用获取文件.获取切片与第一个方法有关,我们进入研究

mapreduce中map数的测试

默认的map数是有逻辑的split的数量决定的,根据源码切片大小的计算公式:Math.max(minSize, Math.min(maxSize, blockSize)): 其中: minsize:默认值:1 配置参数: mapreduce.input.fileinputformat.split.minsize maxsize:默认值:Long.MAXValue 配置参数:mapreduce.input.fileinputformat.split.maxsize blocksize:值为hdfs