朴素贝叶斯分类器及Python实现

贝叶斯定理

贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。

先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。

贝叶斯公式:

P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)

变形得:

P(A|B)=P(B|A)*P(A)/P(B)

其中

  • P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。
  • P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。
  • P(B|A)是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。
  • P(B)是B的先验概率或边缘概率,这里称作标准化常量。
  • P(B|A)/P(B)称作标准似然度。

朴素贝叶斯分类(Naive Bayes)

朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。

首先定义

  • x = {a1,a2,...}为一个样本向量,a为一个特征属性
  • div = {d1 = [l1,u1],...} 特征属性的一个划分
  • class = {y1,y2,...}样本所属的类别

算法流程:

(1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])

(2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])

(3) 计算每个样本的p(x|y[i])

p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...

样本的所有特征属性已知,所以特征属性所属的区间d已知。

可以通过(2)确定p(a[k] in d | y[i])的值,从而求得p(x|y[i])

(4) 由贝叶斯定理得:

p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)

因为分母相同,只需计算分子。

p(y[i]|x)是观测样本属于分类y[i]的概率,找出最大概率对应的分类作为分类结果。

示例:

导入数据集

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

计算类别的先验概率

P(C = 0) = 0.5

P(C = 1) = 0.5

计算每个特征属性条件概率:

P(a1 = 0 | C = 0) = 0.3

P(a1 = 1 | C = 0) = 0.7

P(a2 = 0 | C = 0) = 0.4

P(a2 = 1 | C = 0) = 0.6

P(a1 = 0 | C = 1) = 0.5

P(a1 = 1 | C = 1) = 0.5

P(a2 = 0 | C = 1) = 0.7

P(a2 = 1 | C = 1) = 0.3

测试样本:

x = { a1 = 1, a2 = 2}

p(x | C = 0) = p(a1 = 1 | C = 0) * p( 2 = 2 | C = 0) = 0.3 * 0.6 = 0.18

p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 2 | C = 1) = 0.5 * 0.3 = 0.15

计算P(C | x) * p(x):

P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09

P(C = 1) * p(x | C = 2) = 0.5 * 0.15 = 0.075

所以认为测试样本属于类型C1

Python实现

朴素贝叶斯分类器的训练过程为计算(1),(2)中的概率表,应用过程为计算(3),(4)并寻找最大值。

还是使用原来的接口进行类封装:

from numpy import *

class NaiveBayesClassifier(object):

    def __init__(self):
        self.dataMat = list()
        self.labelMat = list()
        self.pLabel1 = 0
        self.p0Vec = list()
        self.p1Vec = list()

    def loadDataSet(self,filename):
        fr = open(filename)
        for line in fr.readlines():
            lineArr = line.strip().split()
            dataLine = list()
            for i in lineArr:
                dataLine.append(float(i))
            label = dataLine.pop() # pop the last column referring to  label
            self.dataMat.append(dataLine)
            self.labelMat.append(int(label))

    def train(self):
        dataNum = len(self.dataMat)
        featureNum = len(self.dataMat[0])
        self.pLabel1 = sum(self.labelMat)/float(dataNum)
        p0Num = zeros(featureNum)
        p1Num = zeros(featureNum)
        p0Denom = 1.0
        p1Denom = 1.0
        for i in range(dataNum):
            if self.labelMat[i] == 1:
                p1Num += self.dataMat[i]
                p1Denom += sum(self.dataMat[i])
            else:
                p0Num += self.dataMat[i]
                p0Denom += sum(self.dataMat[i])
        self.p0Vec = p0Num/p0Denom
        self.p1Vec = p1Num/p1Denom

    def classify(self, data):
        p1 = reduce(lambda x, y: x * y, data * self.p1Vec) * self.pLabel1
        p0 = reduce(lambda x, y: x * y, data * self.p0Vec) * (1.0 - self.pLabel1)
        if p1 > p0:
            return 1
        else:
            return 0

    def test(self):
        self.loadDataSet(‘testNB.txt‘)
        self.train()
        print(self.classify([1, 2]))

if __name__ == ‘__main__‘:
    NB =  NaiveBayesClassifier()
    NB.test()

Matlab

Matlab的标准工具箱提供了对朴素贝叶斯分类器的支持:

trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];
group = [1 1 -1 -1 1 1 -1 -1]‘;
model = fitcnb(trainData, group)
testData = [5 2;3 1;-4 -3];
predict(model, testData)

fitcnb用来训练模型,predict用来预测。

时间: 2024-12-24 21:38:52

朴素贝叶斯分类器及Python实现的相关文章

【机器学习算法-python实现】扫黄神器-朴素贝叶斯分类器的实现

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 以前我在外面公司实习的时候,一个大神跟我说过,学计算机就是要一个一个贝叶斯公式的套用来套用去.嗯,现在终于用到了.朴素贝叶斯分类器据说是好多扫黄软件使用的算法,贝叶斯公式也比较简单,大学做概率题经常会用到.核心思想就是找出特征值对结果影响概率最大的项.公式如下: 什么是朴素贝叶斯,就是特征值相互独立互不影响的情况.贝叶斯可以有很多变形,这里先搞一个简单的,以后遇到复杂的再写. 2.数据集 摘自机器学

PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较高的情况.虽然朴素贝叶斯分类器很简单,但是它确经常比一些复杂的方法表现还好. 为了简单阐述贝叶斯分类的基本原理,我们使用上图所示的例子来说明.作为先验,我们知道一个球要么是红球要么是绿球.我们的任务是当有新的输入(New Cases)时,我们给出新输入的物体的类别(红或者绿).这是贝叶斯分类器的典型

从朴素贝叶斯分类器到贝叶斯网络(下)

书接上文 :从朴素贝叶斯分类器到贝叶斯网络(上) 三.贝叶斯网络 贝叶斯网络(Bayesian Network)是一种用于表示变量间依赖关系的数据结构.有时它又被称为信念网络(Belief Network)或概率网络(Probability Network).在统计学习领域.概率图模型(PGM,Probabilistic Graphical Models)经常使用来指代包括贝叶斯网络在内的更加宽泛的一类机器学习模型.比如隐马尔可夫模型(HMM,Hidden Markov Model)也是一种PG

数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes

贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes.TAN.BAN和GBN. 贝叶斯网络是一个带有概率凝视的有向无环图,图中的每个结点均表示一个随机变量,图中两结点 间若存在着一条弧,则表示这两结点相相应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的.网络中随意一个结点X 均有一个对应的条件概率表(Con

朴素贝叶斯分类器的应用 Naive Bayes classifier

一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B) 可得 P(感冒|打喷嚏x建筑工人)  = P(打喷嚏x建筑工人|感冒)

从朴素贝叶斯分类器到贝叶斯网络(上)

一.贝叶斯公式(一些必备的数学基础) 贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家.因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研究所知甚少.唯一知道的是,他提出了概率论中的贝叶斯公式.但从他曾经当选英国皇家科学学会会员(类似于院士)来看,他的研究工作在当时的英国学术界已然受到了普遍的认可. 事实上,在很长一段时间里,人们都没有注意到贝叶斯公式所潜藏的巨大价值.直到二十世纪人工智能.机器学习等崭新学术领域的出现,人们才从一堆早已蒙灰的数学公式中发现了贝

朴素贝叶斯分类器的应用-转载加我的理解注释

生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患

理解朴素贝叶斯分类器的三层境界

1.背景 首先,在文章的开头,先提出几个问题,如果这些问题你都答得上来,那么本文你就无需阅读了,或者你阅读的动机纯粹是给本文挑毛病,当然我也无比欢迎,请发送邮件"毛病の朴素贝叶斯"发送至[email protected],我会认真阅读你的来信. By the way,如果阅读完本文,你还是无法回答以下问题,那么也请你邮件通知我,我会尽量解答你的疑惑. 朴素贝叶斯分类器中的"朴素"特指此分类器的什么特性 朴素贝叶斯分类器与极大似然估计(MLE).最大后验概率(MAP)

基于朴素贝叶斯分类器的文本分类算法

源代码下载:NaviveBayesClassify.rar Preface 文本的分类和聚类是一个比较有意思的话题,我以前也写过一篇blog<基于K-Means的文本聚类算法>,加上最近读了几本数据挖掘和机器学习的书籍,因此很想写点东西来记录下学习的所得. 在本文的上半部分<基于朴素贝叶斯分类器的文本分类算法(上)>一文中简单介绍了贝叶斯学习的基本理论,这一篇将展示如何将该理论运用到中文文本分类中来,具体的文本分类原理就不再介绍了,在上半部分有,也可以参见代码的注释. 文本特征向量