摘要:
HashMap和LinkedList合二为一即是LinkedHashMap。所谓LinkedHashMap,其落脚点在HashMap,因此更准确地说,它是一个将所有Entry节点链入一个双向链表LinkedList的HashMap。由于LinkedHashMap是HashMap的子类,所以LinkedHashMap自然会拥有HashMap的所有特性。比如,LinkedHashMap的元素存取过程基本与HashMap基本类似,只是在细节实现上稍有不同。当然,这是由LinkedHashMap本身的特性所决定的,因为它要额外维护一个双向链表用于保持迭代顺序。此外,LinkedHashMap可以很好的支持LRU算法,笔者在第七节便在LinkedHashMap的基础上实现了一个能够很好支持LRU的结构。
友情提示:
本文所有关于 LinkedHashMap 的源码都是基于 JDK 1.6 的,不同 JDK 版本之间也许会有些许差异,但不影响我们对 LinkedHashMap 的数据结构、原理等整体的把握和了解。
由于 LinkedHashMap 是 HashMap 的子类,所以其具有HashMap的所有特性,这一点在源码共用上体现的尤为突出。因此,读者在阅读本文之前,最好对 HashMap 有一个较为深入的了解和回顾,否则很可能会导致事倍功半。特别地,如果读者需要要深入了解 HashMap,请移步我的博文《Map 综述(一):彻头彻尾理解 HashMap》。
此外,读者在阅读本文之前,对LinkedList的进一步了解和回顾也是十分必要的。关于LinkedList的更多介绍,请移步我的博文《Java Collection Framework : List》。
版权声明:
本文原创作者:书呆子Rico
作者博客地址:http://blog.csdn.net/justloveyou_/
一. LinkedHashMap 概述
笔者曾在《Map 综述(一):彻头彻尾理解 HashMap》一文中提到,HashMap 是 Java Collection Framework 的重要成员,也是Map族(如下图所示)中我们最为常用的一种。不过遗憾的是,HashMap是无序的,也就是说,迭代HashMap所得到的元素顺序并不是它们最初放置到HashMap的顺序。HashMap的这一缺点往往会造成诸多不便,因为在有些场景中,我们确需要用到一个可以保持插入顺序的Map。庆幸的是,JDK为我们解决了这个问题,它为HashMap提供了一个子类 —— LinkedHashMap。虽然LinkedHashMap增加了时间和空间上的开销,但是它通过维护一个额外的双向链表保证了迭代顺序。特别地,该迭代顺序可以是插入顺序,也可以是访问顺序。因此,根据链表中元素的顺序可以将LinkedHashMap分为:保持插入顺序的LinkedHashMap 和 保持访问顺序的LinkedHashMap,其中LinkedHashMap的默认实现是按插入顺序排序的。
本质上,HashMap和LinkedList合二为一即是LinkedHashMap。所谓LinkedHashMap,其落脚点在HashMap,因此更准确地说,它是一个将所有Entry节点链入一个双向链表LinkedList的HashMap。在LinkedHashMapMap中,所有put进来的Entry都保存在如下面第一个图所示的哈希表中,但由于它又额外定义了一个以head为头结点的双向链表(如下面第二个图所示),因此对于每次put进来Entry,除了将其保存到哈希表中对应的位置上之外,还会将其插入到双向链表的尾部。
更直观地,下图很好地还原了LinkedHashMap的原貌:HashMap和LinkedList的密切配合和分工合作造就了LinkedHashMap。特别需要注意的是,next用于维护HashMap各个桶中的Entry链,before、after用于维护LinkedHashMap的双向链表,虽然它们的作用对象都是Entry,但是各自分离,是两码事儿。
其中,HashMap与LinkedHashMap的Entry结构示意图如下图所示:
特别地,由于LinkedHashMap是HashMap的子类,所以LinkedHashMap自然会拥有HashMap的所有特性。比如,LinkedHashMap也最多只允许一条Entry的键为Null(多条会覆盖),但允许多条Entry的值为Null。此外,LinkedHashMap 也是 Map 的一个 非同步的实现。此外,LinkedHashMap还可以用来实现LRU(Least recently used, 最近最少使用)算法,这个问题会在下文的特别谈到。
二. LinkedHashMap 在 JDK 中的定义
1、类结构定义
LinkedHashMap继承于HashMap,其在JDK中的定义为:
public class LinkedHashMap<K,V>
extends HashMap<K,V>
implements Map<K,V> {
...
}
2、成员变量定义
与HashMap相比,LinkedHashMap增加了两个属性用于保证迭代顺序,分别是 双向链表头结点header 和 标志位accessOrder (值为true时,表示按照访问顺序迭代;值为false时,表示按照插入顺序迭代)。
/**
* The head of the doubly linked list.
*/
private transient Entry<K,V> header; // 双向链表的表头元素
/**
* The iteration ordering method for this linked hash map: <tt>true</tt>
* for access-order, <tt>false</tt> for insertion-order.
*
* @serial
*/
private final boolean accessOrder; //true表示按照访问顺序迭代,false时表示按照插入顺序
3、成员方法定义
从下图我们可以看出,LinkedHashMap中并增加没有额外方法。也就是说,LinkedHashMap与HashMap在操作上大致相同,只是在实现细节上略有不同罢了。
4、基本元素 Entry
LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了Entry。LinkedHashMap中的Entry增加了两个指针 before 和 after,它们分别用于维护双向链接列表。特别需要注意的是,next用于维护HashMap各个桶中Entry的连接顺序,before、after用于维护Entry插入的先后顺序的,源代码如下:
private static class Entry<K,V> extends HashMap.Entry<K,V> {
// These fields comprise the doubly linked list used for iteration.
Entry<K,V> before, after;
Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
super(hash, key, value, next);
}
...
}
形象地,HashMap与LinkedHashMap的Entry结构示意图如下图所示:
三. LinkedHashMap 的构造函数
HashMap 一共提供了五个构造函数,它们都是在HashMap的构造函数的基础上实现的,分别如下:
1、LinkedHashMap()
该构造函数意在构造一个具有 默认初始容量 (16) 和 默认负载因子(0.75) 的空 LinkedHashMap,是 Java Collection Framework 规范推荐提供的,其源码如下:
/**
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
* with the default initial capacity (16) and load factor (0.75).
*/
public LinkedHashMap() {
super(); // 调用HashMap对应的构造函数
accessOrder = false; // 迭代顺序的默认值
}
2、LinkedHashMap(int initialCapacity, float loadFactor)
该构造函数意在构造一个 指定初始容量 和 指定负载因子 的空 LinkedHashMap,其源码如下:
/**
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
* with the specified initial capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor); // 调用HashMap对应的构造函数
accessOrder = false; // 迭代顺序的默认值
}
3、LinkedHashMap(int initialCapacity)
该构造函数意在构造一个指定初始容量 和 默认负载因子 (0.75) 的空 LinkedHashMap,其源码如下:
/**
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
* with the specified initial capacity and a default load factor (0.75).
*
* @param initialCapacity the initial capacity
* @throws IllegalArgumentException if the initial capacity is negative
*/
public LinkedHashMap(int initialCapacity) {
super(initialCapacity); // 调用HashMap对应的构造函数
accessOrder = false; // 迭代顺序的默认值
}
4、LinkedHashMap(Map<? extends K, ? extends V> m)
该构造函数意在构造一个与指定 Map 具有相同映射的 LinkedHashMap,其 初始容量不小于 16 (具体依赖于指定Map的大小),负载因子是 0.75,是 Java Collection Framework 规范推荐提供的,其源码如下:
/**
* Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
* the same mappings as the specified map. The <tt>LinkedHashMap</tt>
* instance is created with a default load factor (0.75) and an initial
* capacity sufficient to hold the mappings in the specified map.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public LinkedHashMap(Map<? extends K, ? extends V> m) {
super(m); // 调用HashMap对应的构造函数
accessOrder = false; // 迭代顺序的默认值
}
5、LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)
该构造函数意在构造一个 指定初始容量 和 指定负载因子 的 具有指定迭代顺序的 LinkedHashMap,其源码如下:
/**
* Constructs an empty <tt>LinkedHashMap</tt> instance with the
* specified initial capacity, load factor and ordering mode.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @param accessOrder the ordering mode - <tt>true</tt> for
* access-order, <tt>false</tt> for insertion-order
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor); // 调用HashMap对应的构造函数
this.accessOrder = accessOrder; // 迭代顺序的默认值
}
正如我们在《Map 综述(一):彻头彻尾理解 HashMap》一文中提到的那样,初始容量 和 负载因子 是影响HashMap性能的两个重要参数。同样地,它们也是影响LinkedHashMap性能的两个重要参数。此外,LinkedHashMap 增加了 双向链表头结点 header 和 标志位 accessOrder 两个属性用于保证迭代顺序。
6、init 方法
从上面的五种构造函数我们可以看出,无论采用何种方式创建LinkedHashMap,其都会调用HashMap相应的构造函数。事实上,不管调用HashMap的哪个构造函数,HashMap的构造函数都会在最后调用一个init()方法进行初始化,只不过这个方法在HashMap中是一个空实现,而在LinkedHashMap中重写了它用于初始化它所维护的双向链表。例如,HashMap的参数为空的构造函数以及init方法的源码如下:
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
/**
* Initialization hook for subclasses. This method is called
* in all constructors and pseudo-constructors (clone, readObject)
* after HashMap has been initialized but before any entries have
* been inserted. (In the absence of this method, readObject would
* require explicit knowledge of subclasses.)
*/
void init() {
}
在LinkedHashMap中,它重写了init方法以便初始化双向列表,源码如下:
/**
* Called by superclass constructors and pseudoconstructors (clone,
* readObject) before any entries are inserted into the map. Initializes
* the chain.
*/
void init() {
header = new Entry<K,V>(-1, null, null, null);
header.before = header.after = header;
}
因此,我们在创建LinkedHashMap的同时就会不知不觉地对双向链表进行初始化。
四. LinkedHashMap 的数据结构
本质上,LinkedHashMap = HashMap + LinkedList,也就是说,HashMap和LinkedList合二为一即是LinkedHashMap。也可以这样理解,LinkedHashMap 在不对HashMap做任何改变的基础上,给HashMap的任意两个节点间加了两条连线(before指针和after指针),使这些节点形成一个双向链表。在LinkedHashMapMap中,所有put进来的Entry都保存在HashMap中,但由于它又额外定义了一个以head为头结点的空的双向链表,因此对于每次put进来Entry还会将其插入到双向链表的尾部。
五. LinkedHashMap 的快速存取
我们知道,在HashMap中最常用的两个操作就是:put(Key,Value) 和 get(Key)。同样地,在 LinkedHashMap 中最常用的也是这两个操作。 对于put(Key,Value)方法而言,LinkedHashMap完全继承了HashMap的 put(Key,Value) 方法,只是对put(Key,Value)方法所调用的recordAccess方法和addEntry方法进行了重写;对于get(Key)方法而言,LinkedHashMap则直接对它进行了重写。下面我们结合JDK源码看 LinkedHashMap 的存取实现。
1、LinkedHashMap 的存储实现 : put(key, vlaue)
上面谈到,LinkedHashMap没有对 put(key,vlaue) 方法进行任何直接的修改,完全继承了HashMap的 put(Key,Value) 方法,其源码如下:
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with key, or null if there was no mapping for key.
* Note that a null return can also indicate that the map previously associated null with key.
*/
public V put(K key, V value) {
//当key为null时,调用putForNullKey方法,并将该键值对保存到table的第一个位置
if (key == null)
return putForNullKey(value);
//根据key的hashCode计算hash值
int hash = hash(key.hashCode());
//计算该键值对在数组中的存储位置(哪个桶)
int i = indexFor(hash, table.length);
//在table的第i个桶上进行迭代,寻找 key 保存的位置
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//判断该条链上是否存在hash值相同且key值相等的映射,若存在,则直接覆盖 value,并返回旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this); // LinkedHashMap重写了Entry中的recordAccess方法--- (1)
return oldValue; // 返回旧值
}
}
modCount++; //修改次数增加1,快速失败机制
//原Map中无该映射,将该添加至该链的链头
addEntry(hash, key, value, i); // LinkedHashMap重写了HashMap中的createEntry方法 ---- (2)
return null;
}
上述源码反映了LinkedHashMap与HashMap保存数据的过程。特别地,在LinkedHashMap中,它对addEntry方法和Entry的recordAccess方法进行了重写。下面我们对比地看一下LinkedHashMap 和HashMap的addEntry方法的具体实现:
/**
* This override alters behavior of superclass put method. It causes newly
* allocated entry to get inserted at the end of the linked list and
* removes the eldest entry if appropriate.
*
* LinkedHashMap中的addEntry方法
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
//创建新的Entry,并插入到LinkedHashMap中
createEntry(hash, key, value, bucketIndex); // 重写了HashMap中的createEntry方法
//双向链表的第一个有效节点(header后的那个节点)为最近最少使用的节点,这是用来支持LRU算法的
Entry<K,V> eldest = header.after;
//如果有必要,则删除掉该近期最少使用的节点,
//这要看对removeEldestEntry的覆写,由于默认为false,因此默认是不做任何处理的。
if (removeEldestEntry(eldest)) {
removeEntryForKey(eldest.key);
} else {
//扩容到原来的2倍
if (size >= threshold)
resize(2 * table.length);
}
}
-------------------------------我是分割线------------------------------------
/**
* Adds a new entry with the specified key, value and hash code to
* the specified bucket. It is the responsibility of this
* method to resize the table if appropriate.
*
* Subclass overrides this to alter the behavior of put method.
*
* HashMap中的addEntry方法
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
//获取bucketIndex处的Entry
Entry<K,V> e = table[bucketIndex];
//将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
//若HashMap中元素的个数超过极限了,则容量扩大两倍
if (size++ >= threshold)
resize(2 * table.length);
}
由于LinkedHashMap本身维护了插入的先后顺序,因此其可以用来做缓存,14~19行的操作就是用来支持LRU算法的,这里暂时不用去关心它。此外,在LinkedHashMap的addEntry方法中,它重写了HashMap中的createEntry方法,我们接着看一下createEntry方法:
void createEntry(int hash, K key, V value, int bucketIndex) {
// 向哈希表中插入Entry,这点与HashMap中相同
//创建新的Entry并将其链入到数组对应桶的链表的头结点处,
HashMap.Entry<K,V> old = table[bucketIndex];
Entry<K,V> e = new Entry<K,V>(hash, key, value, old);
table[bucketIndex] = e;
//在每次向哈希表插入Entry的同时,都会将其插入到双向链表的尾部,
//这样就按照Entry插入LinkedHashMap的先后顺序来迭代元素(LinkedHashMap根据双向链表重写了迭代器)
//同时,新put进来的Entry是最近访问的Entry,把其放在链表末尾 ,也符合LRU算法的实现
e.addBefore(header);
size++;
}
由以上源码我们可以知道,在LinkedHashMap中向哈希表中插入新Entry的同时,还会通过Entry的addBefore方法将其链入到双向链表中。其中,addBefore方法本质上是一个双向链表的插入操作,其源码如下:
//在双向链表中,将当前的Entry插入到existingEntry(header)的前面
private void addBefore(Entry<K,V> existingEntry) {
after = existingEntry;
before = existingEntry.before;
before.after = this;
after.before = this;
}
到此为止,我们分析了在LinkedHashMap中put一条键值对的完整过程。总的来说,相比HashMap而言,LinkedHashMap在向哈希表添加一个键值对的同时,也会将其链入到它所维护的双向链表中,以便设定迭代顺序。
2、LinkedHashMap 的扩容操作 : resize()
在HashMap中,我们知道随着HashMap中元素的数量越来越多,发生碰撞的概率将越来越大,所产生的子链长度就会越来越长,这样势必会影响HashMap的存取速度。为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理,该临界点就是HashMap中元素的数量在数值上等于threshold(table数组长度*加载因子)。但是,不得不说,扩容是一个非常耗时的过程,因为它需要重新计算这些元素在新table数组中的位置并进行复制处理。所以,如果我们能够提前预知HashMap 中元素的个数,那么在构造HashMap时预设元素的个数能够有效的提高HashMap的性能。
同样的问题也存在于LinkedHashMap中,因为LinkedHashMap本来就是一个HashMap,只是它还将所有Entry节点链入到了一个双向链表中。LinkedHashMap完全继承了HashMap的resize()方法,只是对它所调用的transfer方法进行了重写。我们先看resize()方法源码:
/**
* Rehashes the contents of this map into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this map reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant).
*/
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
// 若 oldCapacity 已达到最大值,直接将 threshold 设为 Integer.MAX_VALUE
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return; // 直接返回
}
// 否则,创建一个更大的数组
Entry[] newTable = new Entry[newCapacity];
//将每条Entry重新哈希到新的数组中
transfer(newTable); //LinkedHashMap对它所调用的transfer方法进行了重写
table = newTable;
threshold = (int)(newCapacity * loadFactor); // 重新设定 threshold
}
从上面代码中我们可以看出,Map扩容操作的核心在于重哈希。所谓重哈希是指重新计算原HashMap中的元素在新table数组中的位置并进行复制处理的过程。鉴于性能和LinkedHashMap自身特点的考量,LinkedHashMap对重哈希过程(transfer方法)进行了重写,源码如下:
/**
* Transfers all entries to new table array. This method is called
* by superclass resize. It is overridden for performance, as it is
* faster to iterate using our linked list.
*/
void transfer(HashMap.Entry[] newTable) {
int newCapacity = newTable.length;
// 借助于双向链表进行重哈希而不需要对底层的数组进行for循环,大大提高了性能
for (Entry<K,V> e = header.after; e != header; e = e.after) {
int index = indexFor(e.hash, newCapacity); // 计算每个Entry所在的桶
// 将其链入桶中的链表
e.next = newTable[index];
newTable[index] = e;
}
}
如上述源码所示,LinkedHashMap借助于自身维护的双向链表轻松地实现了重哈希操作。若读者想要进一步了解HashMap的重哈希过程,请移步我的博文《Map 综述(一):彻头彻尾理解 HashMap》进行深入了解,此不赘述。
3、LinkedHashMap 的读取实现 :get(Object key)
相对于LinkedHashMap的存储而言,读取就显得比较简单了。LinkedHashMap中重写了HashMap中的get方法,源码如下:
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it‘s also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*/
public V get(Object key) {
// 根据key获取对应的Entry,若没有这样的Entry,则返回null
Entry<K,V> e = (Entry<K,V>)getEntry(key);
if (e == null) // 若不存在这样的Entry,直接返回
return null;
e.recordAccess(this);
return e.value;
}
在LinkedHashMap的get方法中,通过HashMap中的getEntry方法获取Entry对象。注意这里的recordAccess方法,如果链表中元素的排序规则是按照插入的先后顺序排序的话,该方法什么也不做;如果链表中元素的排序规则是按照访问的先后顺序排序的话,则将e移到链表的末尾处,笔者会在后文专门阐述这个问题。
另外,同样地,调用LinkedHashMap的get(Object key)方法后,若返回值是 NULL,则也存在如下两种可能:
- 该 key 对应的值就是 null;
- HashMap 中不存在该 key。
4、LinkedHashMap 存取小结
LinkedHashMap 的存取过程基本与HashMap基本类似,只是在细节实现上稍有不同,这是由LinkedHashMap本身的特性所决定的,因为它要额外维护一个双向链表用于保持迭代顺序。在put操作上,虽然LinkedHashMap完全继承了HashMap的put操作,但是在细节上还是做了一定的调整,比如,在LinkedHashMap中向哈希表中插入新Entry的同时,还会通过Entry的addBefore方法将其链入到双向链表中。在扩容操作上,虽然LinkedHashMap完全继承了HashMap的resize操作,但是鉴于性能和LinkedHashMap自身特点的考量,LinkedHashMap对其中的重哈希过程(transfer方法)进行了重写。在读取操作上,LinkedHashMap中重写了HashMap中的get方法,通过HashMap中的getEntry方法获取Entry对象。在此基础上,进一步获取指定键对应的值。
六. LinkedHashMap 与 LRU(Least recently used,最近最少使用)算法
到此为止,我们已经分析完了LinkedHashMap的存取实现,这与HashMap大体相同。>LinkedHashMap区别于HashMap最大的一个不同点是,前者是有序的,而后者是无序的。为此,LinkedHashMap增加了两个属性用于保证顺序,分别是双向链表头结点header和标志位accessOrder。我们知道,header是LinkedHashMap所维护的双向链表的头结点,而accessOrder用于决定具体的迭代顺序。实际上,accessOrder标志位的作用可不像我们描述的这样简单,我们接下来仔细分析一波~
我们知道,当accessOrder标志位为true时,表示双向链表中的元素按照访问的先后顺序排列,可以看到,虽然Entry插入链表的顺序依然是按照其put到LinkedHashMap中的顺序,但put和get方法均有调用recordAccess方法(put方法在key相同时会调用)。recordAccess方法判断accessOrder是否为true,如果是,则将当前访问的Entry(put进来的Entry或get出来的Entry)移到双向链表的尾部(key不相同时,put新Entry时,会调用addEntry,它会调用creatEntry,该方法同样将新插入的元素放入到双向链表的尾部,既符合插入的先后顺序,又符合访问的先后顺序,因为这时该Entry也被访问了);当标志位accessOrder的值为false时,表示双向链表中的元素按照Entry插入LinkedHashMap到中的先后顺序排序,即每次put到LinkedHashMap中的Entry都放在双向链表的尾部,这样遍历双向链表时,Entry的输出顺序便和插入的顺序一致,这也是默认的双向链表的存储顺序。因此,当标志位accessOrder的值为false时,虽然也会调用recordAccess方法,但不做任何操作。
注意到我们在前面介绍的LinkedHashMap的五种构造方法,前四个构造方法都将accessOrder设为false,说明默认是按照插入顺序排序的;而第五个构造方法可以自定义传入的accessOrder的值,因此可以指定双向循环链表中元素的排序规则。特别地,当我们要用LinkedHashMap实现LRU算法时,就需要调用该构造方法并将accessOrder置为true。
1、put操作与标志位accessOrder
/ 将key/value添加到LinkedHashMap中
public V put(K key, V value) {
// 若key为null,则将该键值对添加到table[0]中。
if (key == null)
return putForNullKey(value);
// 若key不为null,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 若key对已经存在,则用新的value取代旧的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 若key不存在,则将key/value键值对添加到table中
modCount++;
//将key/value键值对添加到table[i]处
addEntry(hash, key, value, i);
return null;
}
从上述源码我们可以看到,当要put进来的Entry的key在哈希表中已经在存在时,会调用Entry的recordAccess方法;当该key不存在时,则会调用addEntry方法将新的Entry插入到对应桶的单链表的头部。我们先来看recordAccess方法:
/**
* This method is invoked by the superclass whenever the value
* of a pre-existing entry is read by Map.get or modified by Map.set.
* If the enclosing Map is access-ordered, it moves the entry
* to the end of the list; otherwise, it does nothing.
*/
void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
//如果链表中元素按照访问顺序排序,则将当前访问的Entry移到双向循环链表的尾部,
//如果是按照插入的先后顺序排序,则不做任何事情。
if (lm.accessOrder) {
lm.modCount++;
//移除当前访问的Entry
remove();
//将当前访问的Entry插入到链表的尾部
addBefore(lm.header);
}
}
LinkedHashMap重写了HashMap中的recordAccess方法(HashMap中该方法为空),当调用父类的put方法时,在发现key已经存在时,会调用该方法;当调用自己的get方法时,也会调用到该方法。该方法提供了LRU算法的实现,它将最近使用的Entry放到双向循环链表的尾部。也就是说,当accessOrder为true时,get方法和put方法都会调用recordAccess方法使得最近使用的Entry移到双向链表的末尾;当accessOrder为默认值false时,从源码中可以看出recordAccess方法什么也不会做。我们反过头来,再看一下addEntry方法:
/**
* This override alters behavior of superclass put method. It causes newly
* allocated entry to get inserted at the end of the linked list and
* removes the eldest entry if appropriate.
*
* LinkedHashMap中的addEntry方法
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
//创建新的Entry,并插入到LinkedHashMap中
createEntry(hash, key, value, bucketIndex); // 重写了HashMap中的createEntry方法
//双向链表的第一个有效节点(header后的那个节点)为最近最少使用的节点,这是用来支持LRU算法的
Entry<K,V> eldest = header.after;
//如果有必要,则删除掉该近期最少使用的节点,
//这要看对removeEldestEntry的覆写,由于默认为false,因此默认是不做任何处理的。
if (removeEldestEntry(eldest)) {
removeEntryForKey(eldest.key);
} else {
//扩容到原来的2倍
if (size >= threshold)
resize(2 * table.length);
}
}
void createEntry(int hash, K key, V value, int bucketIndex) {
// 向哈希表中插入Entry,这点与HashMap中相同
//创建新的Entry并将其链入到数组对应桶的链表的头结点处,
HashMap.Entry<K,V> old = table[bucketIndex];
Entry<K,V> e = new Entry<K,V>(hash, key, value, old);
table[bucketIndex] = e;
//在每次向哈希表插入Entry的同时,都会将其插入到双向链表的尾部,
//这样就按照Entry插入LinkedHashMap的先后顺序来迭代元素(LinkedHashMap根据双向链表重写了迭代器)
//同时,新put进来的Entry是最近访问的Entry,把其放在链表末尾 ,也符合LRU算法的实现
e.addBefore(header);
size++;
}
同样是将新的Entry链入到table中对应桶中的单链表中,但可以在createEntry方法中看出,同时也会把新put进来的Entry插入到了双向链表的尾部。从插入顺序的层面来说,新的Entry插入到双向链表的尾部可以实现按照插入的先后顺序来迭代Entry,而从访问顺序的层面来说,新put进来的Entry又是最近访问的Entry,也应该将其放在双向链表的尾部。在上面的addEntry方法中还调用了removeEldestEntry方法,该方法源码如下:
/**
* Returns <tt>true</tt> if this map should remove its eldest entry.
* This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
* inserting a new entry into the map. It provides the implementor
* with the opportunity to remove the eldest entry each time a new one
* is added. This is useful if the map represents a cache: it allows
* the map to reduce memory consumption by deleting stale entries.
*
* <p>Sample use: this override will allow the map to grow up to 100
* entries and then delete the eldest entry each time a new entry is
* added, maintaining a steady state of 100 entries.
* <pre>
* private static final int MAX_ENTRIES = 100;
*
* protected boolean removeEldestEntry(Map.Entry eldest) {
* return size() > MAX_ENTRIES;
* }
* </pre>
*
* <p>This method typically does not modify the map in any way,
* instead allowing the map to modify itself as directed by its
* return value. It <i>is</i> permitted for this method to modify
* the map directly, but if it does so, it <i>must</i> return
* <tt>false</tt> (indicating that the map should not attempt any
* further modification). The effects of returning <tt>true</tt>
* after modifying the map from within this method are unspecified.
*
* <p>This implementation merely returns <tt>false</tt> (so that this
* map acts like a normal map - the eldest element is never removed).
*
* @param eldest The least recently inserted entry in the map, or if
* this is an access-ordered map, the least recently accessed
* entry. This is the entry that will be removed it this
* method returns <tt>true</tt>. If the map was empty prior
* to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
* in this invocation, this will be the entry that was just
* inserted; in other words, if the map contains a single
* entry, the eldest entry is also the newest.
* @return <tt>true</tt> if the eldest entry should be removed
* from the map; <tt>false</tt> if it should be retained.
*/
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
}
该方法是用来被重写的,一般地,如果用LinkedHashmap实现LRU算法,就要重写该方法。比如可以将该方法覆写为如果设定的内存已满,则返回true,这样当再次向LinkedHashMap中putEntry时,在调用的addEntry方法中便会将近期最少使用的节点删除掉(header后的那个节点)。在第七节,笔者便重写了该方法并实现了一个名副其实的LRU结构。
2、get操作与标志位accessOrder
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it‘s also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*/
public V get(Object key) {
// 根据key获取对应的Entry,若没有这样的Entry,则返回null
Entry<K,V> e = (Entry<K,V>)getEntry(key);
if (e == null) // 若不存在这样的Entry,直接返回
return null;
e.recordAccess(this);
return e.value;
}
在LinkedHashMap中进行读取操作时,一样也会调用recordAccess方法。上面笔者已经表述的很清楚了,此不赘述。
3、LinkedListMap与LRU小结
使用LinkedHashMap实现LRU的必要前提是将accessOrder标志位设为true以便开启按访问顺序排序的模式。我们可以看到,无论是put方法还是get方法,都会导致目标Entry成为最近访问的Entry,因此就把该Entry加入到了双向链表的末尾:get方法通过调用recordAccess方法来实现;put方法在覆盖已有key的情况下,也是通过调用recordAccess方法来实现,在插入新的Entry时,则是通过createEntry中的addBefore方法来实现。这样,我们便把最近使用的Entry放入到了双向链表的后面。多次操作后,双向链表前面的Entry便是最近没有使用的,这样当节点个数满的时候,删除最前面的Entry(head后面的那个Entry)即可,因为它就是最近最少使用的Entry。
七. 使用LinkedHashMap实现LRU算法
如下所示,笔者使用LinkedHashMap实现一个符合LRU算法的数据结构,该结构最多可以缓存6个元素,但元素多余六个时,会自动删除最近最久没有被使用的元素,如下所示:
/**
* Title: 使用LinkedHashMap实现LRU算法
* Description:
* @author rico
* @created 2017年5月12日 上午11:32:10
*/
public class LRU<K,V> extends LinkedHashMap<K, V> implements Map<K, V>{
private static final long serialVersionUID = 1L;
public LRU(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor, accessOrder);
}
/**
* @description 重写LinkedHashMap中的removeEldestEntry方法,当LRU中元素多余6个时,
* 删除最不经常使用的元素
* @author rico
* @created 2017年5月12日 上午11:32:51
* @param eldest
* @return
* @see java.util.LinkedHashMap#removeEldestEntry(java.util.Map.Entry)
*/
@Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
// TODO Auto-generated method stub
if(size() > 6){
return true;
}
return false;
}
public static void main(String[] args) {
LRU<Character, Integer> lru = new LRU<Character, Integer>(
16, 0.75f, true);
String s = "abcdefghijkl";
for (int i = 0; i < s.length(); i++) {
lru.put(s.charAt(i), i);
}
System.out.println("LRU中key为h的Entry的值为: " + lru.get(‘h‘));
System.out.println("LRU的大小 :" + lru.size());
System.out.println("LRU :" + lru);
}
}
下图是程序的运行结果:
八. LinkedHashMap 有序性原理分析
如前文所述,LinkedHashMap 增加了双向链表头结点header 和 标志位accessOrder两个属性用于保证迭代顺序。但是要想真正实现其有序性,还差临门一脚,那就是重写HashMap 的迭代器,其源码实现如下:
private abstract class LinkedHashIterator<T> implements Iterator<T> {
Entry<K,V> nextEntry = header.after;
Entry<K,V> lastReturned = null;
/**
* The modCount value that the iterator believes that the backing
* List should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
int expectedModCount = modCount;
public boolean hasNext() { // 根据双向列表判断
return nextEntry != header;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
LinkedHashMap.this.remove(lastReturned.key);
lastReturned = null;
expectedModCount = modCount;
}
Entry<K,V> nextEntry() { // 迭代输出双向链表各节点
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (nextEntry == header)
throw new NoSuchElementException();
Entry<K,V> e = lastReturned = nextEntry;
nextEntry = e.after;
return e;
}
}
// Key 迭代器,KeySet
private class KeyIterator extends LinkedHashIterator<K> {
public K next() { return nextEntry().getKey(); }
}
// Value 迭代器,Values(Collection)
private class ValueIterator extends LinkedHashIterator<V> {
public V next() { return nextEntry().value; }
}
// Entry 迭代器,EntrySet
private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() { return nextEntry(); }
}
从上述代码中我们可以知道,LinkedHashMap重写了HashMap 的迭代器,它使用其维护的双向链表进行迭代输出。
九. 更多
如果读者需要要深入了解 HashMap,请移步我的另一篇博文《Map 综述(一):彻头彻尾理解 HashMap》。
更多关于LinkedList的介绍,请移步我的博文《Java Collection Framework : List》。
更多关于哈希(Hash)和equals方法的介绍,请移步我的博文《Java 中的 ==, equals 与 hashCode 的区别与联系》。
更多关于 Java SE 进阶 方面的内容,请关注我的专栏 《Java SE 进阶之路》。本专栏主要研究Java基础知识、Java源码和设计模式,从初级到高级不断总结、剖析各知识点的内在逻辑,贯穿、覆盖整个Java知识面,在一步步完善、提高把自己的同时,把对Java的所学所思分享给大家。万丈高楼平地起,基础决定你的上限,让我们携手一起勇攀Java之巅…
引用