通过异步程序调用(APC)实现的定时功能

定时器是一个在特定时间或者规则间隔被激发的内核对象。结合定时器的异步程序调用可以允许回调函数在任何定时器被激发的时候执行。本文的例子代码显示了如何实现。
  使用本定时器时,你需要把常量_WIN32_WINNT定义为0x0400,并且此常量应该在包之前定义,以确保声明合适的定时器原型函数。
   通过调用CreateWaitableTimer()可以创建一个定时器,此函数返回一个指向内核对象的句柄。若定时器已经存在,你可以通过使用 OpenWaitableTimer()获得一个进程相关的句柄。无论是通过CreateWaitableTimer() 还是通过OpenWaitableTimer()获得的句柄,在不需要定 时器时必须释放,方法是使用函数CloseHandle()。
  定时 的时间通过调用SetWaitableTimer()来设置,可以设置为一个特定的时刻(如December 16, 1999 at 9:45 PM)或者一个相对的时间(如从现在起每五分钟)。函数SetWaitableTime()定时的时间参数要求LARGE_INTEGER类型。这个值应 该符合在结构体FILETIME中描述的格式。如果值是正的,代表一个特定的时刻。如果值是负的,代表以100纳秒为单位的相对时间。后面的示例代码中使 用的是相对时间。在调用SetWaitableTimer()函数后,定时器将在每5秒被激发一次。
  你也可以将定时器设置为周期性的自我激 发,方法是向SetWaitableTimer()的第三个参数传递一个周期参数(以毫秒为单位)。在CreateWaitableTimer()的第二 个参数传递FALSE可以产生一个自动归零的定时器。本例设置周期为两秒的定时器。
  当设置了定时器之后,你就可以将APC与其结合起来。这里把APC函数称作完全例程。完全例程的地址作为SetWaitableTimer()的第四个参数。第五个参数是一个空类型的指针,你可以使用它来传递完全例程的参数。
  在所有的APC中,要执行一个完全例程则线程必须处于监听状态。完全例程将总是被调用SetWaitableTimer()的相同的线程执行,所以此线程必须将必须其自身置于监听状态。可以调用下面的任何一个监听函数来完成监听状态的设置:

  • SleepEx();
  • WaitForSingleObjectEx();
  • WaitForMultipleObjectsEx();
  • MsgWaitForMultipleObjectsEx();
  • SignalObjectAndWait();

  任何一个线程都有一个APC队列。在调用上面的任何一个函数时,如果线程的APC队列中有实体,则此线程不会进入休眠状态,取而代之要做的是将实体从APC队列中取出,然后调用相应的完全例程。
   如果在APC队列中不存在实体,那么线程将会被挂起,直至等待条件满足为止。满足等待条件的有:一个实体加入到APC队列中,超时,激活句柄等,以及在 调用MsgWaitForMultipleObjectsEx()情况下,一个消息进入到线程的一个消息队列中。若等待条件满足的是APC队列中的一个实 体,那么线程会被激活,并且执行完全例程,这种情况下的函数的返回值是 WAIT_IO_COMPLETION.

【重要提示】

1、在执行完一个完全例程之后,系统会检查在APC中剩下的实体以处理。一个监视函数仅仅在处理完所有APC实体后才返回。因此,如果实体加入到 APC队列的速度比处理的更快的话,则调用这些函数可能永远也不能返回。特别当定时等待的时间比起要求执行完全例程的时间更短的话,这种情况更容易发生。 
2、当使用APC来实现定时器时,设置定时的线程不应该等待定时器的句柄。如果等待定时器的句柄的话,则唤起这个线程的原因是定时器被激活,而 不是有实体加入到APC队列中。这时线程将不再处于监听状态,所以完全例程也不会被调用。在本例中,Sleep()被用于将线程置于监听状态。在定时器激 活后,如果有实体被加入到此线程的APC队列中时,Sleep()就会唤醒此线程。

【示例代码】

#define _WIN32_WINNT 0x0500

#include <windows.h>
#include <stdio.h>

#define _SECOND 10000000

typedef struct _MYDATA {
   TCHAR *szText;
   DWORD dwValue;
} MYDATA;

VOID CALLBACK TimerAPCProc(
   LPVOID lpArg,               // Data value
   DWORD dwTimerLowValue,      // Timer low value
   DWORD dwTimerHighValue )    // Timer high value

{
   MYDATA *pMyData = (MYDATA *)lpArg;

   printf( "Message: %s/nValue: %d/n/n", pMyData->szText,
          pMyData->dwValue );
   MessageBeep(0);

}

void main( void )
{
   HANDLE          hTimer;
   BOOL            bSuccess;
   __int64         qwDueTime;
   LARGE_INTEGER   liDueTime;
   MYDATA          MyData;
   TCHAR           szError[255];

   MyData.szText = "This is my data.";
   MyData.dwValue = 100;

   if ( hTimer = CreateWaitableTimer(
           NULL,                   // Default security attributes
           FALSE,                  // Create auto-reset timer
           "MyTimer" ) )           // Name of waitable timer
   {
      __try
      {
         // Create an integer that will be used to signal the timer
         // 5 seconds from now.
         qwDueTime = -5 * _SECOND;

         // Copy the relative time into a LARGE_INTEGER.
         liDueTime.LowPart  = (DWORD) ( qwDueTime & 0xFFFFFFFF );
         liDueTime.HighPart = (LONG)  ( qwDueTime >> 32 );

         bSuccess = SetWaitableTimer(
            hTimer,           // Handle to the timer object
            &liDueTime,       // When timer will become signaled
            2000,             // Periodic timer interval of 2 seconds
            TimerAPCProc,     // Completion routine
            &MyData,          // Argument to the completion routine
            FALSE );          // Do not restore a suspended system

         if ( bSuccess )
         {
            for ( ; MyData.dwValue < 1000; MyData.dwValue += 100 )
            {
               SleepEx(
                  INFINITE,     // Wait forever
                  TRUE );       // Put thread in an alertable state
            }

         }
         else
         {
            wsprintf( szError, "SetWaitableTimer failed with Error /
               %d.", GetLastError() );
            MessageBox( NULL, szError, "Error", MB_ICONEXCLAMATION );
         }

      }
      __finally
      {
         CloseHandle( hTimer );
      }
   }
   else
   {
      wsprintf( szError, "CreateWaitableTimer failed with Error %d.",
          GetLastError() );
      MessageBox( NULL, szError, "Error", MB_ICONEXCLAMATION );
   }
}

http://blog.csdn.net/zang141588761/article/details/51543323

http://blog.csdn.net/zang141588761/article/details/51543347
时间: 2024-12-23 17:43:40

通过异步程序调用(APC)实现的定时功能的相关文章

WINDOWS硬件通知应用程序的常方法(五种方式:异步过程调用APC,事件方式VxD,消息方式,异步I/O方式,事件方式WDM)

摘要:在目前流行的Windows操作系统中,设备驱动程序是操纵硬件的最底层软件接口.为了共享在设备驱动程序设计过程中的经验,给出设备驱动程序通知应用程序的5种方法,详细说明每种方法的原理和实现过程,并给出实现的部分核心代码.希望能够给设备驱动程序的设计者提供一些帮助. 关键词:设备驱动程序   异步I/O   Virtual   Device   Driver(VxD)   Windows   Driver   Model(WDM) 引   言  在DOS操作系统中,应用程序可以直接与硬件打交道

C# 异步编程1 APM模式异步程序开发

C#已有10多年历史,单从微软2年一版的更新进度来看活力异常旺盛,C#中的异步编程也经历了多个版本的演化,从今天起着手写一个系列博文,记录一下C#中的异步编程的发展历程.广告一下:喜欢我文章的朋友,请点下面的“关注我”.谢谢 我是2004年接触并使用C#的,那时C#版本为1.1,所以我们就从就那个时候谈起.那时后在大学里自己看书写程序,所写的程序大都是同步程序,最多启动个线程........其实在C#1.1的时代已有完整的异步编程解决方案,那就是APM(异步编程模型).如果还有不了解“同步程序.

【ASP.NET Web API教程】3.3 通过WPF应用程序调用Web API(C#)

参考页面: http://www.yuanjiaocheng.net/ASPNET-CORE/core-static-files.html http://www.yuanjiaocheng.net/ASPNET-CORE/setup-mvc.html http://www.yuanjiaocheng.net/ASPNET-CORE/mvc-design-pattern.html http://www.yuanjiaocheng.net/ASPNET-CORE/mvc-routing.html h

C# 异步编程2 EAP 异步程序开发

在前面一篇博文记录了C# APM异步编程的知识,今天再来分享一下EAP(基于事件的异步编程模式)异步编程的知识.后面会继续奉上TPL任务并行库的知识,喜欢的朋友请持续关注哦. EAP异步编程算是C#对APM的一种补充,让异步编程拥有了一系列状态事件.如果你看过本系列的前一篇文章<C# 异步编程1 APM 异步程序开发>,并假设你是微软C#语言开发组的一员,现在让你来设计基于事件的异步编程模式.那你是会利用之前的APM进行改造?还是进行再次创造呢?所以当你对相关dll进行反编译,会惊喜的发现EA

Linux(centos 6.5) 调用java脚本以及定时运行的脚本实例及配置文件具体解释

Linux(centos 6.5) 调用java脚本以及定时运行的脚本实例 一.调用java程序脚本(默认已经搭建好了Java环境) 1.jdk 安装路径 /usr/jdk/jdk1.7/-- 2.java 程序路径 /usr/jdk 3.类名:Test.java(有主函数的类名) 4.调用java类的脚本,注意脚本的后缀是.sh 5.脚本内容: (1)#! /bin/bash // #! 特殊符号.说明这个脚本是由/bin 文件夹下的bash这个shell来解释并将解释后的内容给kernel来

await和async关键字来写异步程序

await和async关键字出现于.Net5.0,方便写异步程序. 例子: public class MyClass { public MyClass() { DisplayValue(); //这里不会阻塞 System.Diagnostics.Debug.WriteLine("MyClass() End."); } public Task<double> GetValueAsync(double num1, double num2) { return Task.Run(

C# 多线程 用委托实现异步_调用委托的BeginInvoke和EndInvoke方法

1.C#中的每一个委托都内置了BeginInvoke和EndInvoke方法,如果委托的方法列表里只有一个方法,那么这个方法就可以异步执行(不在当前线程里执行,另开辟一个线程执行).委托的BeginInvoke和EndInvoke方法就是为了上述目的而生的. 2.原始线程发起了一个异步线程,有如下三种执行方式: 方式一:等待一直到完成,即原始线程在发起了异步线程以及做了一些必要处理之后,原始线程就中断并等待异步线程结束再继续执行. 方式二:轮询,即原始线程定期检查发起的线程是否完成,如果没有则可

C#程序调用CMD执行命令

在windows环境下,命令行程序为cmd.exe,是一个32位的命令行程序,微软Windows系统基于Windows上的命令解释程序,类似于微软的DOS操作系统.输入一些命令,cmd.exe可以执行,比如输入shutdown -s就会在30秒后关机.总之,它非常有用.打开方法:开始-所有程序-附件 或 开始-寻找-输入:cmd/cmd.exe 回车.它也可以执行BAT文件. 下面介绍使用C#程序调用cmd执行命令: 代码: 1 using System; 2 using System.Coll

WindowsForm应用程序调用WebService

本文原创,如需转载,请标明源地址,谢谢合作!http://blog.csdn.net/sue_1989/article/details/6597078 本文的编写IDE为VSTS2008和.NET Framework3.5 ,其他版本的VS或.Net Framework类似 本示例程序说明:从WinForm程序调用本机的WebServices的方法,返回两个数的和 1. 新建>>项目>>ASP.NET Web 服务应用程序,命名为 WebServiceTest,OK 2.打开Ser