Java并发编程:Concurrent锁机制解析

.title { text-align: center }
.todo { font-family: monospace; color: red }
.done { color: green }
.tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal }
.timestamp { color: #bebebe }
.timestamp-kwd { color: #5f9ea0 }
.right { margin-left: auto; margin-right: 0px; text-align: right }
.left { margin-left: 0px; margin-right: auto; text-align: left }
.center { margin-left: auto; margin-right: auto; text-align: center }
.underline { text-decoration: underline }
#postamble p,#preamble p { font-size: 90%; margin: .2em }
p.verse { margin-left: 3% }
pre { border: 1px solid #ccc; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em }
pre.src { position: relative; overflow: visible; padding-top: 1.2em }
pre.src::before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black }
pre.src:hover::before { display: inline }
pre.src-sh::before { content: "sh" }
pre.src-bash::before { content: "sh" }
pre.src-emacs-lisp::before { content: "Emacs Lisp" }
pre.src-R::before { content: "R" }
pre.src-perl::before { content: "Perl" }
pre.src-java::before { content: "Java" }
pre.src-sql::before { content: "SQL" }
table { border-collapse: collapse }
caption.t-above { caption-side: top }
caption.t-bottom { caption-side: bottom }
td,th { vertical-align: top }
th.right { text-align: center }
th.left { text-align: center }
th.center { text-align: center }
td.right { text-align: right }
td.left { text-align: left }
td.center { text-align: center }
dt { font-weight: bold }
.footpara:nth-child(0n+2) { display: inline }
.footpara { display: block }
.footdef { margin-bottom: 1em }
.figure { padding: 1em }
.figure p { text-align: center }
.inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc }
#org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap }
textarea { }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00 }
.org-info-js_info-navigation { border-style: none }
#org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap }
.org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold }
code { color: #FF0000 }
pre.src { background-color: #002b36; color: #839496 }

Java并发编程:Concurrent锁机制解析

Table of Contents

  • 1. Lock
  • 2. ReentrantLock
  • 3. ReadWriteLock
  • 4. ReentrantReadWriteLock

前面,我们讲了Java自带的对象锁机制。因为我们的方法必然是在一个对象中的,所以,通过对象的锁,可以很好的控制对方法的调用。当对象的锁被一个线程持有后,其他线程想要调用该对象的该方法,就必须进入等待池,等待当前线程执行完毕后,由系统来决定选中谁接下来继续执行。这种方法非常的直观,原理也非常的清晰。

那么,Doug Lea为什么会额外再开发一个并行包呢?

首先,我们从他的Lock锁来看一下,这么做带来的好处。

我觉得最主要的好处是:

  • Lock可以查询到更多的信息,包括当前持有的线程,排队等待的线程数量等,这一点很关键,极大的提高了适用范围,这是后面很多的并发类的基础;
  • 读写锁的分离,相当于在原有的独占锁的基础上,增加了共享锁。对于不需要同步的方法,使用共享锁,所有线程可以同时调用,仅对外部方法进行同步,这一点可以极大的提高性能。

1 Lock

Concurrent包中的Lock只是一个接口类,本身并没有实现。它定义了三个主要的方法,lock(),unlock(),newCondition()。lock()用于线程获取锁,执行到该方法时,如果锁没有被线程占有,则把锁分配给线程,如果已经分配,则等待;unlock()用于解除线程锁定;newCondition()用于创建条件。线程获取锁还有三种其他的方式,如是获取之后是否可以被中断,以试探的方式去获取锁等。

public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    void unlock();
    Condition newCondition();
}

2 ReentrantLock

ReentrantLock是对Lock接口类的一种实现,本质是一种独占锁。使用一个state来保存一个线程调用lock()的次数。当state为0时,锁可以被线程持有,持有之后将state改为1,这样其他线程就不能再次获得该锁了,只有该线程可以再次持有,这就是重入,也就是这个锁的名字的由来。当该线程调用unlock()时,state值减1,直到state再次等于0,表示该线程完全释放了锁。

这个状态量是用一个int来保存的,并且当值超过int表示的最大正整数,就会溢出变为负数,小于0就会报错。所以,同一个锁最多能重入Integer.MAX_VALUE次,也就是2147483647。

int nextc = c + acquires;
if (nextc < 0)
    throw new Error("Maximum lock count exceeded");

至于底层的实现方式,如果看过源代码的话,就会发现基本上是基于CAS实现的,就是compare and swap。就是有一个期望值,当比较当前值与期望值是否相等,当相等时,将值进行更新。所以,当多个线程同时去改变一个值的时候,肯定只有一个线程是可以成功的。因为,这些线程的期望值肯定都是一样的,当其中一个线程修改值之后,其他线程的期望值就对比不成功了。所以,每次最多一个线程能够执行成功。

3 ReadWriteLock

ReadWriteLock同样是一个接口类,有两个方法,分别返回一个读锁和一个写锁,但它们共用一个AQS队列。

Lock readLock();
Lock writeLock();

4 ReentrantReadWriteLock

读写锁的分离意义太重大了,因为很多时候,我们大部分的操作都是在读数据,只有少数情况是需要写数据,如果直接使用同步或者是重入锁,那么性能和效率会非常低。

读锁和写锁有本质的区别,读锁是共享锁,写锁是独占锁。

  • 读操作其实是不需要同步的,只有当写操作在进行中时才需要同步等待,所以当没有写操作时,是空锁,所有线程可以同时调用。
  • 写操作是必须同步的,所以,一次只有一个线程可以占有写锁。
  • 读锁和写锁不能同时被持有,不管是单个线程还是不同的线程。当有读锁在读数据时,写锁也是不能被持有的,必须等待所有的读操作完成,再获得写锁。同样,当写锁被持有时,读锁也不能被持有。

实际上,读锁和写锁是共用一个AQS队列,状态量state也是共用一个。低16位表示写锁,高16位表示读锁。所以,写锁和读锁的可重入数最多锁65535个。

不同的是,获取锁的方式不同:

// 读锁获取锁的方式,是获取共享锁
public void lock() {
    sync.acquireShared(1);
}
// 写锁获取锁的方式,是获取独占锁
public void lock() {
    sync.acquire(1);
}

Date: 2017-07-08 10:22

Author: WEN YANG

Created: 2017-07-09 Sun 23:16

Emacs 25.2.1 (Org mode 8.2.10)

Validate

时间: 2024-10-05 10:28:15

Java并发编程:Concurrent锁机制解析的相关文章

6、Java并发编程:volatile关键字解析

Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以重获生机. volatile关键字虽然从字面上理解起来比较简单,但是要用好不是一件容易的事情.由于volatile关键字是与Java的内存模型有关的,因此在讲述volatile关键之前,我们先来了解一下与内存模型相关的概念和知识,然后分析了volatil

Java并发编程:volatile关键字解析 和双重检查(Double-Check)

转载:http://www.cnblogs.com/dolphin0520/p/3920373.html Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以重获生机. volatile关键字虽然从字面上理解起来比较简单,但是要用好不是一件容易的事情.由于volatile关键字是与Java的内存模型有关的

转 Java并发编程:volatile关键字解析

Java并发编程:volatile关键字解析 (点击链接原文) volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以重获生机. volatile关键字虽然从字面上理解起来比较简单,但是要用好不是一件容易的事情.由于volatile关键字是与Java的内存模型有关的,因此在讲述volatile关键之前,我们先来了解一下与内存模型相关的概念和知识,然后分

Java并发编程:锁的释放

.title { text-align: center } .todo { font-family: monospace; color: red } .done { color: green } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal } .timestamp { color: #bebebe } .timestamp-kwd

java并发编程使用锁进行数据同步操作一

项目中总是出现招标项目超投的情况,最开始总是觉得应该使用框架Hibernate自带的并发策略中的乐观锁(version)解决问题,参考了很多网上的资料,也参考了Hibernate的帮助文档,由于对Hibernate乐观锁机制不了解,问题就一直没有解决. 最近在看Java并发编程相关知识,了解了些许并发,线程,锁的知识.想到了这个问题,曾经使用Synchroized关键字时总是苦于无法获取同一个对象,导致解决方案无效.这次采用的方案是:创建了静态的HashMap<Integer,Lock>,初始

干货:Java并发编程必懂知识点解析

本文大纲 并发编程三要素 原子性 原子,即一个不可再被分割的颗粒.在Java中原子性指的是一个或多个操作要么全部执行成功要么全部执行失败. 有序性 程序执行的顺序按照代码的先后顺序执行.(处理器可能会对指令进行重排序) 可见性 当多个线程访问同一个变量时,如果其中一个线程对其作了修改,其他线程能立即获取到最新的值. 2. 线程的五大状态 创建状态 当用 new 操作符创建一个线程的时候 就绪状态 调用 start 方法,处于就绪状态的线程并不一定马上就会执行 run 方法,还需要等待CPU的调度

干货:Java并发编程必懂知识点解析(内附面试题)

本文大纲 1.并发编程三要素 原子性 原子,即一个不可再被分割的颗粒.在Java中原子性指的是一个或多个操作要么全部执行成功要么全部执行失败. 有序性 程序执行的顺序按照代码的先后顺序执行.(处理器可能会对指令进行重排序) 可见性 当多个线程访问同一个变量时,如果其中一个线程对其作了修改,其他线程能立即获取到最新的值. 2. 线程的五大状态 创建状态 当用 new 操作符创建一个线程的时候 就绪状态 调用 start 方法,处于就绪状态的线程并不一定马上就会执行 run 方法,还需要等待CPU的

java并发编程常见锁类型

锁是java并发编程中最重要的同步机制.锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息.锁是解决并发冲突的重要工具.在开发中我们会用到很多类型的锁,每种锁都有其自身的特点和适用范围.需要深刻理解锁的理念和区别,才能正确.合理地使用锁.常用锁类型乐观锁与悲观锁悲观锁对并发冲突持悲观态度,先取锁后访问数据,能够较大程度确保数据安全性.而乐观锁认为数据冲突的概率比较低,可以尽可能多地访问数据,只有在最终提交数据进行持久化时才获取锁.悲观锁总是先获取锁,会增加很多额外的开销,

【巨杉数据库SequoiaDB】巨杉 Tech | 并发性与锁机制解析与实践

01 概述 数据库是一个多用户使用的共享资源.当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况.若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性.加锁是实现数据库并发控制的一个非常重要的技术.当事务在对某个数据对象进行操作前,先向系统发出请求,对其加锁.加锁后事务就对该数据对象有了一定的控制,在该事务释放锁之前,其他的事务不能对此数据对象进行更新操作. OLTP 场景下通常要求具有很高的并发性.并发事务实际上取决于资源的使用状况,原则上应尽量减少