python实现网页登录时的rsa加密流程

对某些网站的登录包进行抓包时发现,客户端对用户名进行了加密,然后传给服务器进行校验。

使用chrome调试功能断点调试,发现网站用javascript对用户名做了rsa加密。

为了实现网站的自动登录,需要模拟这个加密过程。

网上搜了下关于rsa加密的最简明的解释:

rsa加密是非对称加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可发布的供任何人使用,私钥则为自己所有,供解密之用。

断点调试:

经过分析,登录网站使用公钥对用户名进行加密,公钥值在登录页面响应报文中可以找到,一般为exponent和modulus。

其中exponent为指数,一般为65537,十六进制为010001。

modulus为加密算法中用到的n值,即大数乘积,一般rsa加密算法的介绍文章中都是:(N,e)为公钥,(N,d)为私钥

js代码中有详细的实现过程,比较复杂,如果看懂了再用python来实现,代价太高。

我尝试了三种解决方式:

1、将js代码扣出来,借用浏览器来执行

即使用python的webserver功能,在浏览器上实现js的计算,并将结果返回给客户端

使用python2.7 的BaseHTTPServer模块实现一个模拟加密的过程

server端代码:

#!/usr/bin/env python
# coding:utf-8
from BaseHTTPServer import HTTPServer,BaseHTTPRequestHandler
import io,shutil,urllib
import urlparse
class RequestHandler(BaseHTTPRequestHandler):
    #def do_Head(self):
        #self._writeheaders()
    def _writeheaders(self):
        self.send_response(200)
        self.send_header(‘Content-type‘, ‘text/html‘)
        self.end_headers()
    def do_GET(self):
        parsed_path = urlparse.urlparse(self.path);
        self._writeheaders()
        self.wfile.write("""<!doctype html>
<html class="no-js" lang="">
<head>
    <meta charset="utf-8">
    <title>RSATEST</title>
    <script>
         /*
         * RSA, a suite of routines for performing RSA public-key computations in JavaScript.
         * Copyright 1998-2005 David Shapiro.
         * Dave Shapiro
         * [email protected]
         * changed by Fuchun, 2010-05-06
         * [email protected]
         */
        (function($w) {
        if(typeof $w.RSAUtils === ‘undefined‘)
            var RSAUtils = $w.RSAUtils = {};

        var biRadixBase = 2;
        var biRadixBits = 16;
        var bitsPerDigit = biRadixBits;
        var biRadix = 1 << 16; // = 2^16 = 65536
        var biHalfRadix = biRadix >>> 1;
        var biRadixSquared = biRadix * biRadix;
        var maxDigitVal = biRadix - 1;
        var maxInteger = 9999999999999998;

        //maxDigits:
        //Change this to accommodate your largest number size. Use setMaxDigits()
        //to change it!
        //
        //In general, if you‘re working with numbers of size N bits, you‘ll need 2*N
        //bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need
        //
        //1024 * 2 / 16 = 128 digits of storage.
        //
        var maxDigits;
        var ZERO_ARRAY;
        var bigZero, bigOne;

        var BigInt = $w.BigInt = function(flag) {
            if (typeof flag == "boolean" && flag == true) {
                this.digits = null;
            } else {
                this.digits = ZERO_ARRAY.slice(0);
            }
            this.isNeg = false;
        };

        RSAUtils.setMaxDigits = function(value) {
            maxDigits = value;
            ZERO_ARRAY = new Array(maxDigits);
            for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
            bigZero = new BigInt();
            bigOne = new BigInt();
            bigOne.digits[0] = 1;
        };
        RSAUtils.setMaxDigits(20);

        //The maximum number of digits in base 10 you can convert to an
        //integer without JavaScript throwing up on you.
        var dpl10 = 15;

        RSAUtils.biFromNumber = function(i) {
            var result = new BigInt();
            result.isNeg = i < 0;
            i = Math.abs(i);
            var j = 0;
            while (i > 0) {
                result.digits[j++] = i & maxDigitVal;
                i = Math.floor(i / biRadix);
            }
            return result;
        };

        //lr10 = 10 ^ dpl10
        var lr10 = RSAUtils.biFromNumber(1000000000000000);

        RSAUtils.biFromDecimal = function(s) {
            var isNeg = s.charAt(0) == ‘-‘;
            var i = isNeg ? 1 : 0;
            var result;
            // Skip leading zeros.
            while (i < s.length && s.charAt(i) == ‘0‘) ++i;
            if (i == s.length) {
                result = new BigInt();
            }
            else {
                var digitCount = s.length - i;
                var fgl = digitCount % dpl10;
                if (fgl == 0) fgl = dpl10;
                result = RSAUtils.biFromNumber(Number(s.substr(i, fgl)));
                i += fgl;
                while (i < s.length) {
                    result = RSAUtils.biAdd(RSAUtils.biMultiply(result, lr10),
                            RSAUtils.biFromNumber(Number(s.substr(i, dpl10))));
                    i += dpl10;
                }
                result.isNeg = isNeg;
            }
            return result;
        };

        RSAUtils.biCopy = function(bi) {
            var result = new BigInt(true);
            result.digits = bi.digits.slice(0);
            result.isNeg = bi.isNeg;
            return result;
        };

        RSAUtils.reverseStr = function(s) {
            var result = "";
            for (var i = s.length - 1; i > -1; --i) {
                result += s.charAt(i);
            }
            return result;
        };

        var hexatrigesimalToChar = [
            ‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘,
            ‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘, ‘g‘, ‘h‘, ‘i‘, ‘j‘,
            ‘k‘, ‘l‘, ‘m‘, ‘n‘, ‘o‘, ‘p‘, ‘q‘, ‘r‘, ‘s‘, ‘t‘,
            ‘u‘, ‘v‘, ‘w‘, ‘x‘, ‘y‘, ‘z‘
        ];

        RSAUtils.biToString = function(x, radix) { // 2 <= radix <= 36
            var b = new BigInt();
            b.digits[0] = radix;
            var qr = RSAUtils.biDivideModulo(x, b);
            var result = hexatrigesimalToChar[qr[1].digits[0]];
            while (RSAUtils.biCompare(qr[0], bigZero) == 1) {
                qr = RSAUtils.biDivideModulo(qr[0], b);
                digit = qr[1].digits[0];
                result += hexatrigesimalToChar[qr[1].digits[0]];
            }
            return (x.isNeg ? "-" : "") + RSAUtils.reverseStr(result);
        };

        RSAUtils.biToDecimal = function(x) {
            var b = new BigInt();
            b.digits[0] = 10;
            var qr = RSAUtils.biDivideModulo(x, b);
            var result = String(qr[1].digits[0]);
            while (RSAUtils.biCompare(qr[0], bigZero) == 1) {
                qr = RSAUtils.biDivideModulo(qr[0], b);
                result += String(qr[1].digits[0]);
            }
            return (x.isNeg ? "-" : "") + RSAUtils.reverseStr(result);
        };

        var hexToChar = [‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘,
                ‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘];

        RSAUtils.digitToHex = function(n) {
            var mask = 0xf;
            var result = "";
            for (i = 0; i < 4; ++i) {
                result += hexToChar[n & mask];
                n >>>= 4;
            }
            return RSAUtils.reverseStr(result);
        };

        RSAUtils.biToHex = function(x) {
            var result = "";
            var n = RSAUtils.biHighIndex(x);
            for (var i = RSAUtils.biHighIndex(x); i > -1; --i) {
                result += RSAUtils.digitToHex(x.digits[i]);
            }
            return result;
        };

        RSAUtils.charToHex = function(c) {
            var ZERO = 48;
            var NINE = ZERO + 9;
            var littleA = 97;
            var littleZ = littleA + 25;
            var bigA = 65;
            var bigZ = 65 + 25;
            var result;

            if (c >= ZERO && c <= NINE) {
                result = c - ZERO;
            } else if (c >= bigA && c <= bigZ) {
                result = 10 + c - bigA;
            } else if (c >= littleA && c <= littleZ) {
                result = 10 + c - littleA;
            } else {
                result = 0;
            }
            return result;
        };

        RSAUtils.hexToDigit = function(s) {
            var result = 0;
            var sl = Math.min(s.length, 4);
            for (var i = 0; i < sl; ++i) {
                result <<= 4;
                result |= RSAUtils.charToHex(s.charCodeAt(i));
            }
            return result;
        };

        RSAUtils.biFromHex = function(s) {
            var result = new BigInt();
            var sl = s.length;
            for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
                result.digits[j] = RSAUtils.hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
            }
            return result;
        };

        RSAUtils.biFromString = function(s, radix) {
            var isNeg = s.charAt(0) == ‘-‘;
            var istop = isNeg ? 1 : 0;
            var result = new BigInt();
            var place = new BigInt();
            place.digits[0] = 1; // radix^0
            for (var i = s.length - 1; i >= istop; i--) {
                var c = s.charCodeAt(i);
                var digit = RSAUtils.charToHex(c);
                var biDigit = RSAUtils.biMultiplyDigit(place, digit);
                result = RSAUtils.biAdd(result, biDigit);
                place = RSAUtils.biMultiplyDigit(place, radix);
            }
            result.isNeg = isNeg;
            return result;
        };

        RSAUtils.biDump = function(b) {
            return (b.isNeg ? "-" : "") + b.digits.join(" ");
        };

        RSAUtils.biAdd = function(x, y) {
            var result;

            if (x.isNeg != y.isNeg) {
                y.isNeg = !y.isNeg;
                result = RSAUtils.biSubtract(x, y);
                y.isNeg = !y.isNeg;
            }
            else {
                result = new BigInt();
                var c = 0;
                var n;
                for (var i = 0; i < x.digits.length; ++i) {
                    n = x.digits[i] + y.digits[i] + c;
                    result.digits[i] = n % biRadix;
                    c = Number(n >= biRadix);
                }
                result.isNeg = x.isNeg;
            }
            return result;
        };

        RSAUtils.biSubtract = function(x, y) {
            var result;
            if (x.isNeg != y.isNeg) {
                y.isNeg = !y.isNeg;
                result = RSAUtils.biAdd(x, y);
                y.isNeg = !y.isNeg;
            } else {
                result = new BigInt();
                var n, c;
                c = 0;
                for (var i = 0; i < x.digits.length; ++i) {
                    n = x.digits[i] - y.digits[i] + c;
                    result.digits[i] = n % biRadix;
                    // Stupid non-conforming modulus operation.
                    if (result.digits[i] < 0) result.digits[i] += biRadix;
                    c = 0 - Number(n < 0);
                }
                // Fix up the negative sign, if any.
                if (c == -1) {
                    c = 0;
                    for (var i = 0; i < x.digits.length; ++i) {
                        n = 0 - result.digits[i] + c;
                        result.digits[i] = n % biRadix;
                        // Stupid non-conforming modulus operation.
                        if (result.digits[i] < 0) result.digits[i] += biRadix;
                        c = 0 - Number(n < 0);
                    }
                    // Result is opposite sign of arguments.
                    result.isNeg = !x.isNeg;
                } else {
                    // Result is same sign.
                    result.isNeg = x.isNeg;
                }
            }
            return result;
        };

        RSAUtils.biHighIndex = function(x) {
            var result = x.digits.length - 1;
            while (result > 0 && x.digits[result] == 0) --result;
            return result;
        };

        RSAUtils.biNumBits = function(x) {
            var n = RSAUtils.biHighIndex(x);
            var d = x.digits[n];
            var m = (n + 1) * bitsPerDigit;
            var result;
            for (result = m; result > m - bitsPerDigit; --result) {
                if ((d & 0x8000) != 0) break;
                d <<= 1;
            }
            return result;
        };

        RSAUtils.biMultiply = function(x, y) {
            var result = new BigInt();
            var c;
            var n = RSAUtils.biHighIndex(x);
            var t = RSAUtils.biHighIndex(y);
            var u, uv, k;

            for (var i = 0; i <= t; ++i) {
                c = 0;
                k = i;
                for (j = 0; j <= n; ++j, ++k) {
                    uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
                    result.digits[k] = uv & maxDigitVal;
                    c = uv >>> biRadixBits;
                    //c = Math.floor(uv / biRadix);
                }
                result.digits[i + n + 1] = c;
            }
            // Someone give me a logical xor, please.
            result.isNeg = x.isNeg != y.isNeg;
            return result;
        };

        RSAUtils.biMultiplyDigit = function(x, y) {
            var n, c, uv;

            result = new BigInt();
            n = RSAUtils.biHighIndex(x);
            c = 0;
            for (var j = 0; j <= n; ++j) {
                uv = result.digits[j] + x.digits[j] * y + c;
                result.digits[j] = uv & maxDigitVal;
                c = uv >>> biRadixBits;
                //c = Math.floor(uv / biRadix);
            }
            result.digits[1 + n] = c;
            return result;
        };

        RSAUtils.arrayCopy = function(src, srcStart, dest, destStart, n) {
            var m = Math.min(srcStart + n, src.length);
            for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
                dest[j] = src[i];
            }
        };

        var highBitMasks = [0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
                0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
                0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF];

        RSAUtils.biShiftLeft = function(x, n) {
            var digitCount = Math.floor(n / bitsPerDigit);
            var result = new BigInt();
            RSAUtils.arrayCopy(x.digits, 0, result.digits, digitCount,
                      result.digits.length - digitCount);
            var bits = n % bitsPerDigit;
            var rightBits = bitsPerDigit - bits;
            for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
                result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
                                   ((result.digits[i1] & highBitMasks[bits]) >>>
                                    (rightBits));
            }
            result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
            result.isNeg = x.isNeg;
            return result;
        };

        var lowBitMasks = [0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
                0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
                0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF];

        RSAUtils.biShiftRight = function(x, n) {
            var digitCount = Math.floor(n / bitsPerDigit);
            var result = new BigInt();
            RSAUtils.arrayCopy(x.digits, digitCount, result.digits, 0,
                      x.digits.length - digitCount);
            var bits = n % bitsPerDigit;
            var leftBits = bitsPerDigit - bits;
            for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
                result.digits[i] = (result.digits[i] >>> bits) |
                                   ((result.digits[i1] & lowBitMasks[bits]) << leftBits);
            }
            result.digits[result.digits.length - 1] >>>= bits;
            result.isNeg = x.isNeg;
            return result;
        };

        RSAUtils.biMultiplyByRadixPower = function(x, n) {
            var result = new BigInt();
            RSAUtils.arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
            return result;
        };

        RSAUtils.biDivideByRadixPower = function(x, n) {
            var result = new BigInt();
            RSAUtils.arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
            return result;
        };

        RSAUtils.biModuloByRadixPower = function(x, n) {
            var result = new BigInt();
            RSAUtils.arrayCopy(x.digits, 0, result.digits, 0, n);
            return result;
        };

        RSAUtils.biCompare = function(x, y) {
            if (x.isNeg != y.isNeg) {
                return 1 - 2 * Number(x.isNeg);
            }
            for (var i = x.digits.length - 1; i >= 0; --i) {
                if (x.digits[i] != y.digits[i]) {
                    if (x.isNeg) {
                        return 1 - 2 * Number(x.digits[i] > y.digits[i]);
                    } else {
                        return 1 - 2 * Number(x.digits[i] < y.digits[i]);
                    }
                }
            }
            return 0;
        };

        RSAUtils.biDivideModulo = function(x, y) {
            var nb = RSAUtils.biNumBits(x);
            var tb = RSAUtils.biNumBits(y);
            var origYIsNeg = y.isNeg;
            var q, r;
            if (nb < tb) {
                // |x| < |y|
                if (x.isNeg) {
                    q = RSAUtils.biCopy(bigOne);
                    q.isNeg = !y.isNeg;
                    x.isNeg = false;
                    y.isNeg = false;
                    r = biSubtract(y, x);
                    // Restore signs, ‘cause they‘re references.
                    x.isNeg = true;
                    y.isNeg = origYIsNeg;
                } else {
                    q = new BigInt();
                    r = RSAUtils.biCopy(x);
                }
                return [q, r];
            }

            q = new BigInt();
            r = x;

            // Normalize Y.
            var t = Math.ceil(tb / bitsPerDigit) - 1;
            var lambda = 0;
            while (y.digits[t] < biHalfRadix) {
                y = RSAUtils.biShiftLeft(y, 1);
                ++lambda;
                ++tb;
                t = Math.ceil(tb / bitsPerDigit) - 1;
            }
            // Shift r over to keep the quotient constant. We‘ll shift the
            // remainder back at the end.
            r = RSAUtils.biShiftLeft(r, lambda);
            nb += lambda; // Update the bit count for x.
            var n = Math.ceil(nb / bitsPerDigit) - 1;

            var b = RSAUtils.biMultiplyByRadixPower(y, n - t);
            while (RSAUtils.biCompare(r, b) != -1) {
                ++q.digits[n - t];
                r = RSAUtils.biSubtract(r, b);
            }
            for (var i = n; i > t; --i) {
            var ri = (i >= r.digits.length) ? 0 : r.digits[i];
            var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
            var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
            var yt = (t >= y.digits.length) ? 0 : y.digits[t];
            var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
                if (ri == yt) {
                    q.digits[i - t - 1] = maxDigitVal;
                } else {
                    q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
                }

                var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
                var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
                while (c1 > c2) {
                    --q.digits[i - t - 1];
                    c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
                    c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
                }

                b = RSAUtils.biMultiplyByRadixPower(y, i - t - 1);
                r = RSAUtils.biSubtract(r, RSAUtils.biMultiplyDigit(b, q.digits[i - t - 1]));
                if (r.isNeg) {
                    r = RSAUtils.biAdd(r, b);
                    --q.digits[i - t - 1];
                }
            }
            r = RSAUtils.biShiftRight(r, lambda);
            // Fiddle with the signs and stuff to make sure that 0 <= r < y.
            q.isNeg = x.isNeg != origYIsNeg;
            if (x.isNeg) {
                if (origYIsNeg) {
                    q = RSAUtils.biAdd(q, bigOne);
                } else {
                    q = RSAUtils.biSubtract(q, bigOne);
                }
                y = RSAUtils.biShiftRight(y, lambda);
                r = RSAUtils.biSubtract(y, r);
            }
            // Check for the unbelievably stupid degenerate case of r == -0.
            if (r.digits[0] == 0 && RSAUtils.biHighIndex(r) == 0) r.isNeg = false;

            return [q, r];
        };

        RSAUtils.biDivide = function(x, y) {
            return RSAUtils.biDivideModulo(x, y)[0];
        };

        RSAUtils.biModulo = function(x, y) {
            return RSAUtils.biDivideModulo(x, y)[1];
        };

        RSAUtils.biMultiplyMod = function(x, y, m) {
            return RSAUtils.biModulo(RSAUtils.biMultiply(x, y), m);
        };

        RSAUtils.biPow = function(x, y) {
            var result = bigOne;
            var a = x;
            while (true) {
                if ((y & 1) != 0) result = RSAUtils.biMultiply(result, a);
                y >>= 1;
                if (y == 0) break;
                a = RSAUtils.biMultiply(a, a);
            }
            return result;
        };

        RSAUtils.biPowMod = function(x, y, m) {
            var result = bigOne;
            var a = x;
            var k = y;
            while (true) {
                if ((k.digits[0] & 1) != 0) result = RSAUtils.biMultiplyMod(result, a, m);
                k = RSAUtils.biShiftRight(k, 1);
                if (k.digits[0] == 0 && RSAUtils.biHighIndex(k) == 0) break;
                a = RSAUtils.biMultiplyMod(a, a, m);
            }
            return result;
        };

        $w.BarrettMu = function(m) {
            this.modulus = RSAUtils.biCopy(m);
            this.k = RSAUtils.biHighIndex(this.modulus) + 1;
            var b2k = new BigInt();
            b2k.digits[2 * this.k] = 1; // b2k = b^(2k)
            this.mu = RSAUtils.biDivide(b2k, this.modulus);
            this.bkplus1 = new BigInt();
            this.bkplus1.digits[this.k + 1] = 1; // bkplus1 = b^(k+1)
            this.modulo = BarrettMu_modulo;
            this.multiplyMod = BarrettMu_multiplyMod;
            this.powMod = BarrettMu_powMod;
        };

        function BarrettMu_modulo(x) {
            var $dmath = RSAUtils;
            var q1 = $dmath.biDivideByRadixPower(x, this.k - 1);
            var q2 = $dmath.biMultiply(q1, this.mu);
            var q3 = $dmath.biDivideByRadixPower(q2, this.k + 1);
            var r1 = $dmath.biModuloByRadixPower(x, this.k + 1);
            var r2term = $dmath.biMultiply(q3, this.modulus);
            var r2 = $dmath.biModuloByRadixPower(r2term, this.k + 1);
            var r = $dmath.biSubtract(r1, r2);
            if (r.isNeg) {
                r = $dmath.biAdd(r, this.bkplus1);
            }
            var rgtem = $dmath.biCompare(r, this.modulus) >= 0;
            while (rgtem) {
                r = $dmath.biSubtract(r, this.modulus);
                rgtem = $dmath.biCompare(r, this.modulus) >= 0;
            }
            return r;
        }

        function BarrettMu_multiplyMod(x, y) {
            /*
            x = this.modulo(x);
            y = this.modulo(y);
            */
            var xy = RSAUtils.biMultiply(x, y);
            return this.modulo(xy);
        }

        function BarrettMu_powMod(x, y) {
            var result = new BigInt();
            result.digits[0] = 1;
            var a = x;
            var k = y;
            while (true) {
                if ((k.digits[0] & 1) != 0) result = this.multiplyMod(result, a);
                k = RSAUtils.biShiftRight(k, 1);
                if (k.digits[0] == 0 && RSAUtils.biHighIndex(k) == 0) break;
                a = this.multiplyMod(a, a);
            }
            return result;
        }

        var RSAKeyPair = function(encryptionExponent, decryptionExponent, modulus) {
            var $dmath = RSAUtils;
            this.e = $dmath.biFromHex(encryptionExponent);
            this.d = $dmath.biFromHex(decryptionExponent);
            this.m = $dmath.biFromHex(modulus);
            // We can do two bytes per digit, so
            // chunkSize = 2 * (number of digits in modulus - 1).
            // Since biHighIndex returns the high index, not the number of digits, 1 has
            // already been subtracted.
            this.chunkSize = 2 * $dmath.biHighIndex(this.m);
            this.radix = 16;
            this.barrett = new $w.BarrettMu(this.m);
        };

        RSAUtils.getKeyPair = function(encryptionExponent, decryptionExponent, modulus) {
            return new RSAKeyPair(encryptionExponent, decryptionExponent, modulus);
        };

        if(typeof $w.twoDigit === ‘undefined‘) {
            $w.twoDigit = function(n) {
                return (n < 10 ? "0" : "") + String(n);
            };
        }

        // Altered by Rob Saunders ([email protected]). New routine pads the
        // string after it has been converted to an array. This fixes an
        // incompatibility with Flash MX‘s ActionScript.
        RSAUtils.encryptedString = function(key, s) {
            var a = [];
            var sl = s.length;
            var i = 0;
            while (i < sl) {
                a[i] = s.charCodeAt(i);
                i++;
            }

            while (a.length % key.chunkSize != 0) {
                a[i++] = 0;
            }

            var al = a.length;
            var result = "";
            var j, k, block;
            for (i = 0; i < al; i += key.chunkSize) {
                block = new BigInt();
                j = 0;
                for (k = i; k < i + key.chunkSize; ++j) {
                    block.digits[j] = a[k++];
                    block.digits[j] += a[k++] << 8;
                }
                var crypt = key.barrett.powMod(block, key.e);
                var text = key.radix == 16 ? RSAUtils.biToHex(crypt) : RSAUtils.biToString(crypt, key.radix);
                result += text + " ";
            }
            return result.substring(0, result.length - 1); // Remove last space.
        };

        RSAUtils.decryptedString = function(key, s) {
            var blocks = s.split(" ");
            var result = "";
            var i, j, block;
            for (i = 0; i < blocks.length; ++i) {
                var bi;
                if (key.radix == 16) {
                    bi = RSAUtils.biFromHex(blocks[i]);
                }
                else {
                    bi = RSAUtils.biFromString(blocks[i], key.radix);
                }
                block = key.barrett.powMod(bi, key.d);
                for (j = 0; j <= RSAUtils.biHighIndex(block); ++j) {
                    result += String.fromCharCode(block.digits[j] & 255,
                                                  block.digits[j] >> 8);
                }
            }
            // Remove trailing null, if any.
            if (result.charCodeAt(result.length - 1) == 0) {
                result = result.substring(0, result.length - 1);
            }
            return result;
        };

        RSAUtils.setMaxDigits(130);

        })(window);
    </script>
</head>

<body>
    <p id="user">Hello World!</p>
    <p id="exponent">Hello World!</p>
    <p id="modulus">Hello World!</p>
    <p id="result">Hello World!</p>
    <script>
        function GetRequest(){
            var url = location.search; //获取url中"?"符后的字串
            var theRequest = new Object();
            if (url.indexOf("?") != -1){
                var str = url.substr(1);
                strs = str.split("&");
                for(var i = 0; i < strs.length; i ++){
                    theRequest[strs[i].split("=")[0]]=unescape(strs[i].split("=")[1]);
                }
            }
            return theRequest;
        }
        var Request = new Object();
        Request = GetRequest();
        var user;
        user= Request[‘user‘];
        document.getElementById("user").innerHTML = user;

        function sleep(numberMillis) {
        var now = new Date();
        var exitTime = now.getTime() + numberMillis;
        while (true) {
            now = new Date();
            if (now.getTime() > exitTime)
                return;
            }
        }

        var exponent = ‘010001‘
        var modulus = ‘***********************************************‘
        document.getElementById("exponent").innerHTML = exponent;
        document.getElementById("modulus").innerHTML = modulus; 

        RSAPUB_KEY = RSAUtils.getKeyPair(exponent,‘‘,modulus);
        enpassword = RSAUtils.encryptedString(RSAPUB_KEY,user);
        document.getElementById("result").innerHTML = enpassword;
        console.log(enpassword);
    </script>
</body>
</html>""")
        #self.send_response(‘index.html‘);
        #self.end_headers();
        return

if __name__ == "__main__":
    server = HTTPServer((‘127.0.0.1‘, 9999), RequestHandler);
    print "Starting server, use <Ctrl-C> to stop";
    server.serve_forever();

  客户端发送get请求,把待加密信息作为参数传过来,python的webserver实现加密,并传回结果。

(ps. js代码本来想通过文件路径的方式调用,但是调试时出现报错,于是直接将代码拷到head里面了。直接调js文件路径的方式,不知道是否可行,待研究。。。)

但是这种方法,要保证server一直运行,实际使用中比较麻烦。

2 使用python的rsa第三方库实现rsa加密:

python能做rsa加密的库从网上搜到三种:PyCrypto,rsa,M2Crypto

因为我们从网站响应中只能拿到e和n两个值,需要通过(e,n)获取公钥。

发现PyCrypto和rsa有这种功能,M2Crypto 没有找到,加上M2Crypto 安装比较麻烦,就没有试。

使用使用PyCrypto加密:

import Crypto.PublicKey.RSA
from Crypto.PublicKey import RSA
#from Crypto.Cipher import PKCS1_OAEP
from Crypto.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from Crypto.Signature import PKCS1_v1_5 as Signature_pkcs1_v1_5
from Crypto.Hash import SHA
import binascii

def rsaEncrypt1(str):
    timespan = 1411093327735 - int(time.time())*1000;
    rsakey = Crypto.PublicKey.RSA.construct((long(n,16),long(e,16))) #根据e,n生成publicKey
    public_key = rsakey.publickey().exportKey()
    with open(‘master-public.pem‘, ‘w‘) as f:
        f.write(public_key)

    with open(‘master-public.pem‘) as f:
        key = f.read()
        rsakey = RSA.importKey(key)
        cipher = Cipher_pkcs1_v1_5.new(rsakey)
        crypto = cipher.encrypt(str)
        en= binascii.b2a_hex(crypto)
        print en
        return en
rsaEncrypt1(‘12345678‘)

 这种加密方式使用的padding方式(填充方式)是pkcs1_v1_5,同一字符串每次加密结果不一样,与js实现结果不符。

pyCrypto还支持一种填充方式,PKCS1_OAEP,试了下,也是同一字符串每次加密结果不一样

使用rsa库加密:

import rsa

def useRsaEn(str):
    rsaPublickey = long(n, 16)   #n为modulus
    key = rsa.PublicKey(rsaPublickey, 65537)  #65537 为e,一般等于010001

    passwd = rsa.encrypt(str, key)
    passwd = binascii.b2a_hex(passwd)
    print passwd
    return passwd

useRsaEn(‘12345566‘)

 这种加密出来的结果也是相同字符串,结果不一样,猜测是用的pkcs1的填充方式。

相同字符串每次加密结果不一样,看网上的解释是填充方式采用的随机方式,如果结果每次一样,应该是使用的no padding模式。

至于js中相同字符串每次结果一样,应该使用的是no padding填充方式,手动在末尾做填充,而不是随机填充。

找了这两个库的文档,发现没有使用无填充加密的方法。

因此使用现成rsa库加密的方式行不通!

该不会只能读懂js代码再用python实现吧~~最后灵机一动,试试用python直接调用js代码是否可行。

3 python调用js函数实现rsa加密

python调用js的库真的有几个,选了个用的人比较多,安装不那么费劲的PyV8。windows直接下exe安装程序即可。

import PyV8

def usePyV8(message):
    ctxt = PyV8.JSContext()
    ctxt.__enter__()
    js_file = open(‘security.js‘)  #security.js在当前目录下
    js_data = js_file.read()
    js_file.close()
    ctxt.eval(js_data)
    rsaEn = ctxt.locals.rsaEn  #rsaEn 为security.js中的function
    ret=rsaEn(message)    #message为rsaEn函数的入参
    print ret

usePyV8(‘12345678‘)

  经实验,发现确实可行!就是js代码需要稍做修改,比如: (function($w) {  })(window); 这种貌似不能识别,我把$w 这种都直接删掉了。

收获:

1、熟悉了rsa加密算法原理

2、熟悉了python webserver的实现

3、熟悉了python  rsa库的使用方法

4、熟悉了python调用js的方法

5、熟悉了chrome调试js的方法,对js语法理解更深入

最后还解决了问题,完美!

时间: 2024-10-25 02:41:10

python实现网页登录时的rsa加密流程的相关文章

登录页面之RSA加密

我的项目是金融类项目,所以一般的form表单做登录页面未免太草率,所以决定使用加密技术RSA, RSA是目前使用最为广泛的非对称性加密算法,其设计思路为:将两个大素数进行相乘,乘积作为公钥,而对乘积进行因式分解的素数组合成私钥, 解密者拥有私钥,并且将由私钥计算生成的公钥发布给加密者.加密都使用公钥进行加密,并将密文发送到解密者,解密者用私钥解密将密文解码为明文. 算法实现过程为: 1. 随意选择两个大的质数p和q,p不等于q,计算N=pq. 2. 根据欧拉函数,不大于N且与N互质的整数個数為(

VC显示网页验证码、模拟CSDN网页登录

摘要:by:koma 这两天,本来想花点时间研究一下QQ空间.农场外挂,于是抓包分析一了下,只可惜,在QQ网页登录时进行了加密处理,可惜我对网页编程一窍不通.有些朋友曾讲过那些是通过JS代码进行加密,可惜我JS也是一片空白,真是出师未杰身先死,惭愧惭愧...... 于...by:koma 这两天,本来想花点时间研究一下QQ空间.农场外挂,于是抓包分析一了下,只可惜,在QQ网页登录时进行了加密处理,可惜我对网页编程一窍不通.有些朋友曾讲过那些是通过JS代码进行加密,可惜我JS也是一片空白,真是“出

【Python模拟登录】RSA加密与重放方式登录 -以模拟登录博客园为例

Python模拟登录第一弹见:[Python数据分析]Python模拟登录(一) requests.Session应用上次的登录是最基本的,全部是明文,而且在浏览器中就可以看到POST的数据.接下来我们来个稍微难一点的–模拟登录博客园(http://www.cnblogs.com) 登录特点:用户名密码都进行了RSA加密,且在浏览器中无法看到POST数据 图1如上图,在post数据中不能显式看到POST内容. 模拟登录步骤 既然浏览器调试功能无法探测到POST数据,那么采用Fiddler试试看,

Jmeter_前端RSA加密下的登陆模拟_引用js文件实现

在一次项目实战中,前端登录使用了RSA加密,使用LoadRunner压测的第一步,就是模拟用户登录,可惜loadRunner11并不能录制前端的加密过程,并且安装的LR是基于C语言版,网络上关于RSA的加密更多的是Java版,最后,选择在Jmeter中先尝试一下能否解决加密的问题,毕竟它有很多处理器,用于脚本的插入: 把解决过程中遇到的问题,简单做个记录,防止遗忘,也算是给自己下一次项目一个经验总结了: [1]了解加密方式-----RSA 询问开发前端的加密方式:先请求public_key,再加

python RSA加密解密及模拟登录cnblog

1.公开密钥加密 又称非对称加密,需要一对密钥,一个是私人密钥,另一个则是公开密钥.公钥加密的只能私钥解密,用于加密客户上传数据.私钥加密的数据,公钥可以解密,主要用于数字签名.详细介绍可参见维基百科. 2.RSA加密算法 RSA加密属于非对称加密.RSA算法基于一个十分简单的数论事实:将两个大质数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥.维基百科中对RSA算法的安全性进行说明:RSA加密算法 "对极大整数做因式分解的难度决定了RSA算法的可靠性.换言

python模拟腾讯网页登录

近日,研究Tencent网页模拟登录的过程,过程有些忐忑.先将结果写于此,供大家参考: 其加密过程在c_login_old.js文件中执行,将JS关键代码提取出来如下: function hexchar2bin(str) { var arr = []; for (var i = 0; i < str.length; i = i + 2) { arr.push("\\x" + str.substr(i, 2)) } arr = arr.join(""); eva

我的java web登录RSA加密

之前一直没关注过web应用登录密码加密的问题,这两天用appscan扫描应用,最严重的问题就是这个了,提示我明文发送密码.这个的确很不安全,以前也大概想过,但是没有具体研究过,都不了了之,这次借这个机会,终于搞定了这个问题. 首先,有不少帖子说在客户端用js对密码进行md5摘要,然后提交给登录处理的url.这种做法无非是自欺欺人,就算别人抓包抓不到你原始密码,用这个md5后的密码一样可以模拟登录系统,无非稍微安全了一点点,也就是直接通过登录页没法直接输入用户名密码来登录,但是人家的手段你知道有啥

python中的RSA加密与解密

什么是RSA: RSA公开密钥密码体制.所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制. 在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的.加密算法E和解密算法D也都是公开的.虽然解密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK. 正是基于这种理论,1978年出现了著名的RSA算法,它通常是先生成一对RSA 密钥,其中之一是保密密钥,由用户保存:另一个为公开

(原创)VS2017 C# 运行 Javasrcipt RSA 加密用户名登录 Java开发的服务器

第一次写博客. 最近想做一个Web的自动登录,用户名和密码是RSA加密过的,后台是用的JAVA,我只会点C#,抓包什么都搞定了(使用的是Fiddler),不过由于C#和RSA的加密方式不同,我搞了N天,都搞不定,中间问过很多人,愿意帮助的人不多,可能是我太菜了.就是为了得到个认证的cookie,我中间用过Webbrowser控件,让人自己登录,然后得到Cookie,不过感觉终究是个半成品. 然而,C#和Java中间的RSA互转,我遇到了2个问题,网上都是public key 转 public k