网络流24题 餐巾计划问题

题目描述

一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同。假设第 i 天需要 ri块餐巾(i=1,2,…,N)。餐厅可以购买新的餐巾,每块餐巾的费用为 p 分;或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分;或者送到慢洗部,洗一块需 n 天(n>m),其费用为 s<f 分。每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。试设计一个算法为餐厅合理地安排好 N 天中餐巾使用计划,使总的花费最小。编程找出一个最佳餐巾使用计划.

输入输出格式

输入格式:

第 1 行有 6 个正整数 N,p,m,f,n,s。N 是要安排餐巾使用计划的天数;p 是每块新餐巾的费用;m 是快洗部洗一块餐巾需用天数;f 是快洗部洗一块餐巾需要的费用;n 是慢洗部洗一块餐巾需用天数;s 是慢洗部洗一块餐巾需要的费用。接下来的 N 行是餐厅在相继的 N 天里,每天需用的餐巾数。

输出格式:

程序运行结束时,将餐厅在相继的 N 天里使用餐巾的最小总花费输出

输入输出样例

输入样例#1:

3 10 2 3 3 2
5
6
7

输出样例#1:

145

BYVOID:【问题分析】网络优化问题,用最小费用最大流解决。【建模方法】把每天分为二分图两个集合中的顶点Xi,Yi,建立附加源S汇T。1、从S向每个Xi连一条容量为ri,费用为0的有向边。2、从每个Yi向T连一条容量为ri,费用为0的有向边。3、从S向每个Yi连一条容量为无穷大,费用为p的有向边。4、从每个Xi向Xi+1(i+1<=N)连一条容量为无穷大,费用为0的有向边。5、从每个Xi向Yi+m(i+m<=N)连一条容量为无穷大,费用为f的有向边。6、从每个Xi向Yi+n(i+n<=N)连一条容量为无穷大,费用为s的有向边。求网络最小费用最大流,费用流值就是要求的最小总花费。【建模分析】这个问题的主要约束条件是每天的餐巾够用,而餐巾的来源可能是最新购买,也可能是前几天送洗,今天刚刚洗好的餐巾。每天用完的餐巾可以选择送到快洗部或慢洗部,或者留到下一天再处理。经过分析可以把每天要用的和用完的分离开处理,建模后就是二分图。二分图X集合中顶点Xi表示第i天用完的餐巾,其数量为ri,所以从S向Xi连接容量为ri的边作为限制。Y集合中每个点Yi则是第i天需要的餐巾,数量为ri,与T连接的边容量作为限制。每天用完的餐巾可以选择留到下一天(Xi->Xi+1),不需要花费,送到快洗部(Xi->Yi+m),费用为f,送到慢洗部(Xi->Yi+n),费用为s。每天需要的餐巾除了刚刚洗好的餐巾,还可能是新购买的(S->Yi),费用为p。在网络上求出的最小费用最大流,满足了问题的约束条件(因为在这个图上最大流一定可以使与T连接的边全部满流,其他边只要有可行流就满足条件),而且还可以保证总费用最小,就是我们的优化目标。

主要的问题就是想到把要用的餐巾和用过的餐巾分开处理拆点得到二分图,考虑两者的来源和去向,增加s和t求最大流
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=2005,M=1e6+5,INF=1e9;
int read(){
    char c=getchar();int x=0,f=1;
    while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1; c=getchar();}
    while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘; c=getchar();}
    return x*f;
}
int n,p,fn,fp,sn,sp,r[N],s,t;
struct edge{
    int v,ne,c,f,w;
}e[M<<1];
int cnt,h[N];
inline void ins(int u,int v,int c,int w){
    cnt++;
    e[cnt].v=v;e[cnt].c=c;e[cnt].f=0;e[cnt].w=w;
    e[cnt].ne=h[u];h[u]=cnt;
    cnt++;
    e[cnt].v=u;e[cnt].c=0;e[cnt].f=0;e[cnt].w=-w;
    e[cnt].ne=h[v];h[v]=cnt;
}
void build(){
    s=0;t=n+n+1;
    for(int i=1;i<=n;i++){
        ins(s,i,r[i],0);
        ins(i+n,t,r[i],0);
        ins(s,i+n,INF,p);
        if(i+1<=n) ins(i,i+1,INF,0);
        if(i+fn<=n) ins(i,i+n+fn,INF,fp);
        if(i+sn<=n) ins(i,i+n+sn,INF,sp);
    }
}
int d[N],q[N],head,tail,inq[N],pre[N],pos[N];
inline void lop(int &x){if(x==N)x=1;else if(x==0) x==N-1;}
bool spfa(){
    memset(d,127,sizeof(d));
    memset(inq,0,sizeof(inq));
    head=tail=1;
    d[s]=0;inq[s]=1;q[tail++]=s;
    pre[t]=-1;
    while(head!=tail){
        int u=q[head++];inq[u]=0;lop(head);
        for(int i=h[u];i;i=e[i].ne){
            int v=e[i].v,w=e[i].w;
            if(d[v]>d[u]+w&&e[i].c>e[i].f){
                d[v]=d[u]+w;
                pre[v]=u;pos[v]=i;
                if(!inq[v]){
                    inq[v]=1;
                    if(d[v]<d[q[head]]) head--,lop(head),q[head]=v;
                    else q[tail++]=v,lop(tail);
                }
            }
        }
    }
    return pre[t]!=-1;
}
int mcmf(){
    int flow=0,cost=0;
    while(spfa()){
        int f=INF;
        for(int i=t;i!=s;i=pre[i]) f=min(f,e[pos[i]].c-e[pos[i]].f);
        flow+=f;cost+=d[t]*f;
        for(int i=t;i!=s;i=pre[i]){
            e[pos[i]].f+=f;
            e[((pos[i]-1)^1)+1].f-=f;
        }
    }
    return cost;
}
int main(int argc, const char * argv[]){
    n=read();p=read();fn=read();fp=read();sn=read();sp=read();
    for(int i=1;i<=n;i++) r[i]=read();
    build();
    printf("%d",mcmf());
}
				
时间: 2024-10-24 22:08:50

网络流24题 餐巾计划问题的相关文章

【Codevs1237&amp;网络流24题餐巾计划】(费用流)

题意:一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同. 假设第 i 天需要 ri块餐巾(i=1,2,-,N).餐厅可以购买新的餐巾,每块餐巾的费用为 p 分: 或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分: 或者送到慢洗部,洗一块需 n 天(n>m),其费用为 s<f 分.每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗. 但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量.试设计一个算法为餐厅合理地安排好 N 天

[网络流24题] 餐巾计划问题 [费用流]

题面: https://www.luogu.org/problemnew/show/P1251 思路: 这道题乍一看,可以跑上下界费用流 代码量.难度 -> inf 其实不然,我们可以用费用流的特殊处理去掉下界 观察题目,每天要求有ri块餐巾 首先,有贪心如下: 当且仅当每天可供使用的餐巾正好满足需求时,可以有最小费用 证明:若某一天有多一块餐巾,则其根本来源一定是买多了,而且在这块餐巾参与的周转中还消费了一些清洗费用,同时它造成其余的日子里也会有餐巾被闲置 因此首先把题目转化为"每天正好

[网络流24题] 餐巾计划

https://www.luogu.org/problemnew/show/1251 样例的构图: #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define N 4005 #define M 12001 const int inf=1e17; typedef long long LL; int tot=1; in

BZOJ 1221 HNOI 2001 软件开发/网络流24题 餐巾计划问题 最小费用最大流

题目大意:有一个软件公司,每天需要给一些员工准备消毒毛巾,这些毛巾可以循环利用,但是需要消毒.可以将毛巾送去消毒,有两种方式,A天fA花费,B天fB花费.或者还可以直接买新毛巾,问为了满足员工的需求,至少需要花多少钱. 思路:经典的费用流问题.将每一天拆点,S向每一天<<1连边,约束每一天需要多少毛巾:每一天<<1|1向T连边,约束每一天需要的毛巾.每一天<<1向这一天清洗的毛巾能够使用的那一天<<1|1,注意A和B.毛巾可以延后使用,那么每一天<&l

网络流(费用流):[网络流24题] 餐巾

[网络流24题] 餐巾 [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p).如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. (3)把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f). 在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部.在每天开始时,餐厅必须决定是否购买新餐

CGOS461 [网络流24题] 餐巾(最小费用最大流)

题目这么说的: 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. 购买新的餐巾,每块需p分: 把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p).如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. 把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f). 在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部.在每天开始时,餐厅必须决定是否购买新餐巾及多少,使洗好的和新购的餐巾之和满足当

COGS461. [网络流24题] 餐巾

[问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p).如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. (3)把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f). 在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部.在每天开始时,餐厅必须决定是否购买新餐巾及多少,使洗好的和新购

[网络流24题] 餐巾

★★★   输入文件:napkin.in   输出文件:napkin.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p).如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. (3)把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f

【COGS 461】[网络流24题] 餐巾 最小费用最大流

既然是最小费用最大流我们就用最大流来限制其一定能把每天跑满,那么把每个表示天的点向T连流量为其所需餐巾,费用为0的边,然后又与每天的餐巾对于买是无限制的因此从S向每个表示天的点连流量为INF,费用为一个餐巾的费用的边,然后我们考虑怎么用旧餐巾,我们用旧餐巾,要既不影响本点流量,也不影响本点费用,因此我们在开一坨点表示其对应得那天的旧餐巾,并通过他向离他快洗和离他慢洗天数的天的点连边,流量为Inf,费用为快洗.慢洗的费用,然后对于多余的旧餐巾,我们在一排天点中间从第一天连续地连到最后一天,流量为I