And Then There Was One(约瑟夫问题变形)

题目链接:http://poj.org/problem?id=3517

And Then There Was One

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5014   Accepted: 2685

Description

Let’s play a stone removing game.

Initially, n stones are arranged on a circle and numbered 1, …, n clockwise (Figure 1). You are also given two numbers k and m. From this state, remove stones one by one following the rules explained below, until only one remains. In step 1, remove stone m. In step 2, locate the k-th next stone clockwise from m and remove it. In subsequent steps, start from the slot of the stone removed in the last step, make k hops clockwise on the remaining stones and remove the one you reach. In other words, skip (k − 1) remaining stones clockwise and remove the next one. Repeat this until only one stone is left and answer its number. For example, the answer for the case n = 8, k = 5, m = 3 is 1, as shown in Figure 1.


Initial state

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Final state
 

Figure 1: An example game

Initial state: Eight stones are arranged on a circle.

Step 1: Stone 3 is removed since m = 3.

Step 2: You start from the slot that was occupied by stone 3. You skip four stones 4, 5, 6 and 7 (since k = 5), and remove the next one, which is 8.

Step 3: You skip stones 1, 2, 4 and 5, and thus remove 6. Note that you only count stones that are still on the circle and ignore those already removed. Stone 3 is ignored in this case.

Steps 4–7: You continue until only one stone is left. Notice that in later steps when only a few stones remain, the same stone may be skipped multiple times. For example, stones 1 and 4 are skipped twice in step 7.

Final State: Finally, only one stone, 1, is on the circle. This is the final state, so the answer is 1.

Input

The input consists of multiple datasets each of which is formatted as follows.

n k m

The last dataset is followed by a line containing three zeros. Numbers in a line are separated by a single space. A dataset satisfies the following conditions.

2 ≤ n ≤ 10000, 1 ≤ k ≤ 10000, 1 ≤ m ≤ n

The number of datasets is less than 100.

Output

For each dataset, output a line containing the stone number left in the final state. No extra characters such as spaces should appear in the output.

Sample Input

8 5 3
100 9999 98
10000 10000 10000
0 0 0

Sample Output

1
93
2019

题意:n个数排成一个圈,第一次删除m以后每次数到k个数删除一次,求最后一个被杉树的数题解:是约瑟夫环问题的变形,距离上次学习约瑟夫环有一定时间了,上次不理解,这次理解递推的数学过程了:当第n次,第f(n)个人出局了的时候剩下的n-1个人就构成了一个新的约瑟夫环问题,那么现在如果知道了第n-1次是第f(n-1)个人出局了,那么反着想,但是转化的时候是要从k+1个人开始计数,那么相当是吧k+1-->0;k+2-->1.......所以在要想知道了f(n-1)想求f(n)就要用f(n) =  [k+1+f(n-1)]%n;现在好了递归函数出来了那么就可以写一个普通约瑟夫环的代码:
 1 #include<cstdio>
 2 using namespace std;
 3 int main()
 4 {
 5       int n,m,i,s = 0;
 6      printf("N M =");//n个数,每次数m个数出列
 7       scanf("%d%d",&n,&m);
 8      for(i = 2; i <= n; i++)
 9       {
10          s = (s + m) % i;
11       }
12       printf("\n The winner is %d\n",s+1);
13 }


这个题,要注意是从m开始计数的,但是由于递归的时候每次操作都是f(n) = (f(n-1)+k)%n;

但是实际上第一次的时候是删除掉了第m个数,而且编号是从1开始编号的,所以正常的将最后一组重新编号的时候f`(n) = [f(n-1)+m+1]%n; 所以最后答案应该是f`(n) = (m-k+1+f(n))%n;

ac代码:

 1 #include<cstdio>
 2 using namespace std;
 3 const int maxn = 10002;
 4 int f[maxn];
 5
 6 int main()
 7 {
 8     int n, k, m;
 9     while(~scanf("%d%d%d",&n,&k,&m)){
10         if(n==0) return 0;
11         f[1] = 0;
12         for(int i = 2; i <= n; i++)f[i] = (f[i-1]+k)%i;
13         int ans = (m-k+1+f[n])%n;
14         if(ans<=0) ans+=n;//必须注意边界情况因为最后出现了-k所以要考虑负数的情况
15         printf("%d\n",ans);
16     }
17     return 0;
18 }
 
时间: 2024-10-12 19:54:46

And Then There Was One(约瑟夫问题变形)的相关文章

uvalive 4727 jump跳跃(dp/约瑟夫问题变形)

 题意是: 个数组成一个环,从第k个元素开始删除,每隔k个元素删一个,问最后删除的三个是什么 思路:约瑟夫问题变形,倒数第二个第三个求法与最后一个元素求法相同 #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #inclu

Poj 3517 And Then There Was One(约瑟夫环变形)

简单说一下约瑟夫环:约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周围的人全部出列. 想要求出最后剩下的那个人的在初始的时候的编号的话. f[1]=0; f[i]=(f[i-1]+m)%i;  (i>1) 可以推出剩下i个人内叫到m的时候的编号.注意这是逆推.推到最后初始的时候的情况 #include<stdio.h>

HDU 5643 King&#39;s Game | 约瑟夫环变形

经典约瑟夫环 1 int f[N] ={ 0 }; 2 for(int i=2; i<=n; i++) 3 { 4 f[i] = (f[i-1] + k) % i; 5 } 变形:k是变化的 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <stdlib.h> #include <queue> #in

【约瑟夫环变形】UVa 1394 - And Then There Was One

首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更容易(...)共享一下~http://blog.csdn.net/chenguolinblog/article/details/8873444 问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数.求胜利者的编号. 编号0~(n-1)是有意义的,因为要

poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

题目链接: POJ  1012: http://poj.org/problem?id=1012 HDU 1443: http://acm.hdu.edu.cn/showproblem.php?pid=1443 约瑟夫环(百度百科): http://baike.baidu.com/view/717633.htm?fr=aladdin Description The Joseph's problem is notoriously known. For those who are not famili

(hdu step 2.2.2)Joseph(约瑟夫环变形问题)

题目: Joseph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2078 Accepted Submission(s): 1204   Problem Description The Joseph\\\\\\\'s problem is notoriously known. For those who are not familiar

HDU 5860 Death Sequence (递推)

题意:n个人排成一行,从第一个人开始,每个k个人报数,报到数的人被杀死,剩下的人重新排成一行再报数.一共q个询问,每次询问第qi个死的人是谁. 析:是一个约瑟夫的变形,我们要考虑子问题的问题同样编号是0-n-1,如果在某一轮,第 i 个人如果能取模 k 为0,那么这一轮他就会被干掉,如果不是 那么下一轮他就是编号为 i-i/k-1,然后再处理每一轮多少个人被干掉,就OK了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000&q

LA 4727

约瑟夫题目变形,思路和前面白书那个例题差不多~~ #include<algorithm> #include<cstdio> #include<cstring> #include<queue> #define maxn 500009 using namespace std; int dp1[maxn]; int dp2[maxn]; int dp3[maxn]; int main() { int t,n,k; scanf("%d",&

华为机试 之 joseph环

一:首先科普一下约瑟夫问题的数学方法 (1)  不管是用list实现还是用vector实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比較烦,并且时间复杂度高达O(nm),当n,m很大(比如上百万,上千万)的时候,差点儿是没有办法在短时间内出结果的.我们注意到原问题不过要求出最后的胜利者的序号,而不是要读者模拟整个过程.因此假设要追求效率,就要打破常规,实施一点数学策略. (2) 为了讨论方便,先把问题略微改变一下,并不影响原意:  问题描写叙述:n个人(编号0~(n-1)),从0開始报数