牛顿法|阻尼牛顿法|拟牛顿法|DFP算法|BFGS算法|L-BFGS算法

一直记不住这些算法的推导,所以打算详细点写到博客中以后不记得就翻阅自己的笔记。



泰勒展开式



最初的泰勒展开式,若  在包含  的某开区间(a,b)内具有直到n+1阶的导数,则当x∈(a,b)时,有:

可得到如下式子:

泰勒展开我的理解就有两个式子。

参考文献:http://baike.baidu.com/link?url=E-D1MzRCjDi8qrlh2Cn64fwtz703bg-h_z2_mOXorti2_3aBKrOUY4-2gHuESowiK8aQSBFE8y0yJeGl4_yOAq



牛顿法



太晚,明天有空继续,贴个参考文献:http://blog.csdn.net/itplus/article/details/21896453

时间: 2024-10-05 14:31:56

牛顿法|阻尼牛顿法|拟牛顿法|DFP算法|BFGS算法|L-BFGS算法的相关文章

【工程优化】最优化算法--牛顿法、阻尼牛顿法及单纯形法

牛顿法 使用条件:目标函数具有二阶导数,且海塞矩阵正定. 优缺点: 收敛速度快.计算量大.很依赖初始点的选择. 算法的基本步骤: 算法流程图: 阻尼牛顿法 与牛顿法基本相同,只是加入了一维精确搜索: 优缺点:改善了局部收敛性. 我们假设要求f=(x-1)*(x-1)+y*y的最小值,具体算法实现如下,只需要运行NTTest.m文件,其它函数文件放在同一目录下即可: 1.脚本文件NTTest.m clear all clc syms x y f=(x-1)*(x-1)+y*y; var=[x y]

算法导论——lec 13 贪心算法与图上算法

之前我们介绍了用动态规划的方法来解决一些最优化的问题.但对于有些最优化问题来说,用动态规划就是"高射炮打蚊子",采用一些更加简单有效的方法就可以解决.贪心算法就是其中之一.贪心算法是使所做的选择看起来是当前最佳的,期望通过所做的局部最优选择来产生一个全局最优解. 一. 活动选择问题 [问题]对几个互相竞争的活动进行调度:活动集合S = {a1, a2, ..., an},它们都要求以独占的方式使用某一公共资源(如教室),每个活动ai有一个开始时间si和结束时间fi ,且0 ≤ si &

基本算法研究1-冒泡排序算法测试

基本算法研究1-冒泡排序算法测试 1.经典冒泡排序法基本原理 先看一个动态图,感觉比较形象: 冒泡排序(Bubble Sort)是一种简单的排序算法.默认是从小到大排序,即把最大的数据排在最后,相当于每次把最大数据像气泡一样浮到水面一样.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换. 基本步骤: 1.比较相邻的元素.如果第一个比第二个大,就交换他们两个.        2.对每一对相邻元素作同样的工作,从开始第一对

【机器学习算法-python实现】采样算法的简单实现

1.背景 采样算法是机器学习中比较常用,也比较容易实现的(出去分层采样).常用的采样算法有以下几种(来自百度知道): 一.单纯随机抽样(simple random sampling) 将调查总体全部观察单位编号,再用抽签法或随机数字表随机抽取部分观察单位组成样本. 优点:操作简单,均数.率及相应的标准误计算简单. 缺点:总体较大时,难以一一编号. 二.系统抽样(systematic sampling) 又称机械抽样.等距抽样,即先将总体的观察单位按某一顺序号分成n个部分,再从第一部分随机抽取第k

【JavaScript】【算法】JavaScript版排序算法

JavaScript版排序算法:冒泡排序.快速排序.插入排序.希尔排序(小数据时,希尔排序会比快排快哦) 1 //排序算法 2 window.onload = function(){ 3 var array = [0,1,2,44,4, 4 324,5,65,6,6, 5 34,4,5,6,2, 6 43,5,6,62,43, 7 5,1,4,51,56, 8 76,7,7,2,1, 9 45,4,6,7,8]; 10 //var array = [4,2,5,1,0,3]; 11 array

图灵算法群《啊哈算法》领读

--图灵算法群阅读计划(第一期) 领读人:Zoctopus·Lian 本书特色 一本充满智慧和趣味的算法入门书.没有枯燥的描述,没有难懂的公式,一切以实际应用为出发点. 书中涉及到的数据结构有栈.队列.链表.树.并查集.堆和图等:涉及到的算法有排序.枚举.深度和广度优先搜索.图的遍历,当然还有图论中不可以缺少的四种最短路径算法.两种最小生成树算法.割点与割边算法.二分图的最大匹配算法等. 书中通过幽默的语言配以可爱的插图来讲解算法,使用C语言实现. 适合读者 适合算法零基础入门和喜爱编程的朋友(

《算法之道》精华 算法设计部分

<算法之道>精华 算法设计部分 本书作者邹恒明,作者另有一本书<数据结构之弦>,以及<操作系统之哲学原理>都是非常好的书 这本书能够算得上是深入浅出.文笔非常好,作者加入了非常多自己的思考 本文仅包含算法设计部分,算法分析略去,并没有严格依照章节顺序来记录 附录 算法随想 有人喜欢遍历,希望踏遍千山万水,人生丰富多彩:有人一生贪婪,眼界不宽,及时行乐:有人注定穷搜,辛辛苦苦,收获有限:有人善用时空均衡,用最少的时间办最多的事情.十分精明:有人会分治,再难的问题也能解决.

图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G).其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合.显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树. 深度优先生成森林   右边的是深度优先生成森林: 连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不

【数据分析/挖掘底层算法】原创实现二项分布算法以及应用

7.2 二项分布算法 作者 白宁超 2015年8月15日22:51:38 摘要:本文继统计学几何分布.二项分布.泊松分布研究的深入,基于各种分布基础概念和核心知识介绍之后.就各种分布的实现和真实环境下应用方是目的.在进行一系列相互独立实验,每次既有成功,又有失败的可能,且单次实验成功概率相等.在一系列试验中求成功的次数.这种情况下适用于本算法.本算法中在n次伯努利试验中:试验n次得到r次成功的概率.二项分布的期望.二项分布方差的具体实现. 目录 统计学之离散概率分布的运用 统计学之几何分布.二项