【概率论与数理统计】小结2 - 随机变量概述

注:对随机变量及其取值规律的研究是概率论的核心内容。在上一个小结中,总结了随机变量的概念以及随机变量与事件的联系。这个小结会更加深入的讨论随机变量。

随机变量与事件



随机变量的本质是一种函数(映射关系),在古典概率模型中,“事件和事件的概率”是核心概念;但是在现代概率论中,“随机变量及其取值规律”是核心概念。

随机变量与事件的联系与区别

小结1中对这两个概念的联系进行了非常详细的描述。随机变量实际上只是事件的另一种表达方式,这种表达方式更加形式化和符号化,也更加便于理解以及进行逻辑运算。不同的事件,其实就是随机变量不同取值的组合。在陈希孺的书中,举了一个很好的例子来说明两者之间的差别:

对于随机试验,我们所关心的往往是与所研究的特定问题有关的某个或某些量,而这些量就是随机变量。当然,有时我们所关心的是某个或某些特定的随机事件。例如,在特定一群人中,年收入在万元以上的高收入者,以及年收入在3000元以下的低收入者,各自的比率如何?这看上去像是两个孤立的事件。可是,若我们引入一个随机变量X:

X = 随机抽出一个人其年收入,

则X是我们关心的随机变量。上述两个事件可分别表示为{X > 10000}或{X < 3000}。这就看出:随机事件这个概念实际上包容在随机变量这个更广的概念之内。也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则是一种动态的观点,一如数学分析中的常量与变量的区分那样,变量概念是高等数学有别于初等数学的基础概念。同样,概率论能从计算一些孤立事件的概率发展为一个更高的理论体系,其基本概念就是随机变量。

一下子引用了一大段话,这段话非常清楚的解释了随机变量与事件的区别:就像变量与常量之间的差别那样,这样的差别比起我自己看到的要大得多。做这样的比较也有利于自己更好的理解“随机变量”这个多少有点抽象的概念。

随机变量的分类



随机变量从其可能取的值全体的性质可以分为两大类:离散型随机变量和连续型随机变量。

离散型随机变量

离散型随机变量的取值在整个实数轴上是间隔的,要么只有有限个取值,要么是无限可数的。

图1:离散型随机变量的概率质量分布

常见的离散型随机变量包括以下几种:

  • 0-1分布(也叫两点分布或伯努利分布)
  • 二项分布
  • 几何分布
  • 泊松分布
  • 超几何分布

连续型随机变量

连续型随机变量的取值要么包括整个实数集(-∞, +∞),要么在一个区间内连续,总之这类随机变量的可能取值要比离散型随机变量的取值多得多,它们的个数是无限不可数的。

常见的连续型随机变量包括以下几种:

  • 均匀分布
  • 指数分布
  • 正态分布

随机变量的基本性质



随机变量最主要的性质是其所有可能取到的这些值的取值规律,即取到的概率大小。如果我们把一个随机变量的所有可能的取值的规律都研究透彻了,那么这个随机变量也就研究透彻了。研究随机变量的方法主要有两类:一类是大而全的方法,这类方法可以详细描述所有可能取值的概率,例如累积分布函数和概率密度函数就是这类方法;另一类是找到该随机变量的一些特征或是代表值,例如随机变量的方差或期望等数字特征就是这类方法。见下表:

缩写 全拼 中文名 解释
CDF Cumulative Distribution Function 累计分布函数  
PDF Probability Density Function 概率密度分布函数 连续型随机变量在各点的取值规律
PMF Probability Mass Function 概率质量分布 离散随机变量在各特定取值上的概率
RVS Random Variate Sample 随机变量的样本 从一个给定分布取样
PPF Percentile Point Function 百分位数点函数 CDF的反函数
IQR Inter Quartile Range 四分位数间距 25%分位数与75%分位数之差
SD Standard Error 标准差 用于描述随机变量取值的集中程度
SEM Standard Error of the Mean 样本均值的估计标准误差,简称平均值标准误差  
CI Confidence Interval 置信区间  

表1:常见的随机变量的性质

 

概率质量函数vs概率密度函数

概率质量函数和概率密度函数不同之处在于:概率质量函数是对离散随机变量定义的,本身代表该值的概率;概率密度函数是对连续随机变量定义的,本身不是概率,只有对连续随机变量的概率密度函数在某区间内进行积分后才是概率。

References



《概率论与数量统计》,陈希孺,中国科学技术大学出版社,2009年2月第一版

中国大学MOOC:浙江大学,概率论与数理统计

https://en.wikipedia.org/wiki/Probability_distribution

时间: 2024-10-14 21:46:19

【概率论与数理统计】小结2 - 随机变量概述的相关文章

【概率论与数理统计】小结9 - 参数估计概述

注:在统计学的应用中,参数估计和假设检验是最重要的两个方面.参数估计是利用样本的信息,对总体的未知参数做估计.是典型的“以偏概全”. 0. 参数及参数的估计 参数是总体分布中的参数,反映的是总体某方面特征的量.例如:合格率,均值,方差,中位数等.参数估计问题是利用从总体抽样得到的信息来估计总体的某些参数或者参数的某些函数. 问题的一般提法 设有一个统计总体,总体的分布函数为$F(x, \theta)$,其中$\theta$为未知参数.现从该总体取样本$X_1, X_2, ..., X_n$,要依

【概率论与数理统计】小结10-1 - 假设检验概述

注:终于写到最激动人心的部分了.假设检验应该是统计学中应用最广泛的数据分析方法,其中像"P值"."t检验"."F检验"这些如雷贯耳的名词都来自假设检验这一部分.我自己刚开进入生物信息学领域,用的最多的就是"利用t检验来判断某个基因在实验组和对照组中表达量的差异是否显著".此外,对"P值"真正含义的探究也开启了自学概率论与数理统计之路.因此无论是应用价值,还是对我学习统计学的影响,这部分的内容都是意义非凡的.

【概率论与数理统计】小结1 - 基本概念

注:其实从中学就开始学习统计学了,最早的写"正"字唱票(相当于寻找众数),就是一种统计分析的过程.还有画直方图,求平均值,找中位数等.自己在学校里并没有完整系统的学习过概率论和数理统计,直到在工作中用到,才从最初的印象中,逐渐把这门学科与整个数学区分开来.自从认识到这门学科在自己从事的工作(数据分析)中所处的重要地位,真没少花时间在这方面的学习上.从最初的p值的含义,到各种分布,假设检验,方差分析...有的概念看过很多遍,但还是没有理解透彻:有的看过,长时间不用,又忘记了.总之,这一路

【概率论与数理统计】小结3 - 一维离散型随机变量及其Python实现

注:上一小节对随机变量做了一个概述,这一节主要记录一维离散型随机变量以及关于它们的一些性质.对于概率论与数理统计方面的计算及可视化,主要的Python包有scipy, numpy和matplotlib等. 以下所有Python代码示例,均默认已经导入上面的这几个包,导入代码如下: import numpy as np from scipy import stats import matplotlib.pyplot as plt 0.  Python中调用一个分布函数的步骤 scipy是Pytho

概率论与数理统计图式(第三章 随机变量)

概率论与数理统计图式(第三章 随机变量) 1.随机变量 定义在样本空间的函数 表示:用大写英文字母X.Y.Z表示 例:Y={1,0},1:骰子为偶数,0:骰子为奇数 原文地址:https://www.cnblogs.com/ggotransfromation/p/11612071.html

【总目录】——概率论与数理统计及Python实现

注:这是一个横跨数年的任务,标题也可以叫做“从To Do List上划掉学习统计学”.在几年前为p值而苦恼的时候,还不知道Python是什么:后来接触过Python,就喜欢上了这门语言.统计作为数据科学的基础,想要从事这方面的工作,这始终是一个绕不过去的槛. 其实从中学就开始学习统计学了,最早的写"正"字唱票(相当于寻找众数),就是一种统计分析的过程.还有画直方图,求平均值,找中位数等.自己在学校里并没有完整系统的学习过概率论和数理统计,直到在工作中用到,才从最初的印象中,逐渐把这门学

概率论与数理统计图解.tex

\documentclass[UTF8,a1paper,landscape]{ctexart} \usepackage{tikz} \usepackage{amsmath} \usepackage{amssymb} \usepackage{geometry} \geometry{top=5cm,bottom=5cm,left=5cm,right=5cm} \usepackage{fancyhdr} \pagestyle{fancy} \begin{document} \title{\Huge 概

概率论与数理统计-ch6-样本与抽样分布

概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质.数字特征等. 在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独立的试验得到许多观察值去推断随机变量的种种可能分布. 1.随机样本 总体:试验的全部可能的观察值.   =样本空间 个体:每一个可能观察值. =样本点 容量:总体中所包含的个体的个数. 有限总体 无限总体 一个总体对应一个随机变量X,对总体的研究就是对随机变量X的研究.所以将不区分总体与相应的随机变量,统称为总体X. 样本:在数理统计中,人们都

概率论与数理统计学习笔记

第一章 随机事件与概率 第二章 随机变量及其分布 第三章 多维随机变量及其分布 第四章 大数定律与中心极限定理 第五章 统计量及其分布 第六章 参数估计 第七章 假设检验 第八章 方差分析与回归分析 第一章 随机事件与概率 1.1随机事件及其运算 概率论与数理统计研究的对象是随机现象. 概率论是研究随机现象的模型(即概率分布),数理统计是研究随机现象的数据收集与处理. 随机现象: 在一定的条件下,并不总是出现相同结果的现象称为随机现象 样本空间:随机现象的一切可能基本结果组成的集合称为样本空间