ISL - Ch.5 Resampling Methods

Resampling methods involve repeatedly drawing samples from a training set and refitting a model of interest on each sample in order to obtain additional information about the fitted model.

In this chapter, we discuss two of the most commonly used resampling methods, cross-validation and the bootstrap.

5.1 Cross-Validation

5.1.1 The Validation Set Approach

It involves randomly dividing the available set of samples into two parts, a training set and a validation set or hold-out set. The model is fit on the training set, and the fitted model is used to predict the responses for the observations in the validation set.

5.1.2 Leave-one-out cross-validation (LOOCV)

Like the validation set approach, LOOCV involves splitting the set of observations into two parts. However, instead of creating two subsets of comparable size, a single observation (x1,y1) is used for the validation set, and the remaining observations {(x2, y2), . . . , (xn, yn)} make up the training set.

5.1.3 k-Fold Cross-Validation

An alternative to LOOCV is k-fold CV. This approach involves randomly dividing the set of observations into k groups, or folds, of approximately equal size. The first fold is treated as a validation set, and the method is fit on the remaining k ? 1 folds.

5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation

The test error estimate resulting from LOOCV tends to have higher variance than does the test error estimate resulting from k-fold CV.

Typically, one performs k-fold cross-validation using k = 5 or k = 10.

5.2 The Bootstrap

Each bootstrap data set contains n observations, sampled with replacement from the original data set.

时间: 2024-12-27 12:46:13

ISL - Ch.5 Resampling Methods的相关文章

ISL - Ch.6 Linear Model Selection and Regularization

Q: Why might we want to use another fitting procedure instead of least squares? A: alternative fitting procedures can yield better prediction accuracy and model interpretability. 6.1 Subset Selection 6.1.1 Best Subset Selection Now in order to select

【Notes目录】

A. 统计 1. <An Introduction to Statistical Learning>作者:  Gareth James / Daniela Witten / Trevor Hastie / Robert Tibshirani,出版社: Springer,副标题: with Applications in R,出版年: 2013-8-12,页数: 426,定价: USD 79.99,ISBN: 9781461471370 Ch.1. Introduction Ch.2. Stat

基于fMRI生理噪声抑制方法知识的应用研究

第六章 基于fMRI生理噪声抑制方法知识的应用研究 6.1 引言 生理噪声抑制研究的应用可分为两个方向,纵向研究应用和横向研究应用.将生理噪声抑制操作融入fMRI信号分析的预处理环节中,属于纵向研究应用.比如,Kelley等人[74]利用python编程语言编写的生理噪声处理工具包PhysioNoise:牛津大学功能磁共振研究中心推出的FSL(FMRIB Software Library)软件包[75]融入了生理噪声抑制预处理组件PNM(Physiological Noise Modelling

基于CCA的fMRI信号生理噪声抑制方法

第三章 基于CCA的fMRI信号生理噪声抑制方法 3.1 引言 典型相关分析作为一种多元变量相关分析方法,可以用来提取出自相关的信号子空间,因而被广泛地用来做激活信号的提取及噪声成分的估计[48][55].基于CCA,Churchill等人[10]提出了对fMRI残差数据做成分分解,进而估计出具有自相关特性的生理噪声成分,并在真实数据集上取得了较为显著的噪声抑制效果.但该方法需要先知道实验的刺激范式作为先验知识,然后去除fMRI信号中刺激范式相关的成分以得到残差数据.这里对功能信号与噪声信号进行

分辨真假数据科学家的20个问题及回答

分辨真假数据科学家的20个问题及回答 2016-11-14 大数据文摘 [导语]本文分为两个部分,第一部分是quora上很火的一篇问答--[20个分辨真假数据科学家的问题]中赞赏数最高的回答,第二部分则是KDnuggets阅读量非常高的一篇文章[KDnuggets编辑们针对这20个问题给出的回答].前者由大数据文摘团队选稿翻译校对后,呈现在各位读者面前.后者授权转载自计算广告(Comp_Ad)译者白雪.龙星镖局,原载于KDnuggets.本次将分散于不同地址的相关资源整合推送,希望更有利于有兴趣

提升深度学习模型的表现,你需要这20个技巧

提升深度学习模型的表现,你需要这20个技巧 标签: 深度学习 2016-09-24 21:28 6650人阅读 评论(0) 收藏 举报  分类: 深度学习(4)  选自machielearningmastery 机器之心编译 作者:Jason Brownlee 参与:杜夏德.陈晨.吴攀.Terrence.李亚洲 本文原文的作者 Jason Brownlee 是一位职业软件开发者,没有博士学位的他通过「从应用中学习」的方法自学了机器学习,他表示对帮助职业开发者应用机器学习来解决复杂问题很有热情,也

深度 | 提升深度学习模型的表现,你需要这20个技巧(附论文)

深度 | 提升深度学习模型的表现,你需要这20个技巧(附论文) 2018-04-15 19:53:45 JF_Ma 阅读数 296更多 分类专栏: 机器学习 深度 | 提升深度学习模型的表现,你需要这20个技巧(附论文) 2016-09-23 机器之心 选自machielearningmastery 机器之心编译 作者:Jason Brownlee 参与:杜夏德.陈晨.吴攀.Terrence.李亚洲 本文原文的作者 Jason Brownlee 是一位职业软件开发者,没有博士学位的他通过「从应用

Video processing systems and methods

BACKGROUND The present invention relates to video processing systems. Advances in imaging technology have led to high resolution cameras for personal use as well as professional use. Personal uses include digital cameras and camcorders that can captu

Spring Bean Life Cycle Methods – InitializingBean, DisposableBean, @PostConstruct, @PreDestroy and *Aware interfaces

Spring Beans are the most important part of any Spring application. Spring ApplicationContext is responsible to initialize the Spring Beans defined in spring bean configuration file. Spring Context is also responsible for injection dependencies in th