矩阵卷积Matlab(转载)

转载自:http://blog.csdn.net/anan1205/article/details/12313593

两个矩阵卷积转化为矩阵相乘形式——Matlab应用(这里考虑二维矩阵,在图像中对应)两个图像模糊(边缘)操作,假设矩阵A、B,A代表源图像,B代表卷积模板,那么B的取值决定最后运算的结果。

Matlab中的应用函数——conv2(二维卷积,一维对应conv)

函数给出的公式定义为:

同一维数据卷积一样,它的实质在于将卷积模板图像翻转(旋转180),这里等同于一维信号的翻转,然后将卷积模板依次从上到下、从左到右滑动,计算在模板与原始图像交集元素的乘积和,该和就作为卷积以后的数值。

为了验证后续矩阵卷积转化为矩阵相乘,这里给出的conv2的实例描述:

假设矩阵A(4*3)、B(2*3)如下:

首先,B需要旋转180,

命令旋转2次90即可:

B = rot90(rot90(B));或者B = rot90(h,2);  结果为:

其次:命令conv2函数:

C = conv2(A,B,‘shape’),该函数的具体操作图示:

依次计算直至结束,结果数据为:

shape的取值有三种,full代表返回卷积以后的全部数据,size为(mA+mB-1,nA+nB-1)的数据;same代表返回卷积以后的原图size (mA,nA)的部分数据;valid返回size为(mA-mB+1,nA-nB+1)的数据,指的是模板元素全部参加运算的结果数据,即源图像和模板的交集为模板。

矩阵卷积转化为矩阵相乘,网上也有很多方法,通俗化表示为:

A×B = B1*A1;

需要针对原始数据与模板数据做变换,变换过程如下:

 首先进行周期延拓,补零:

M = mA+mB-1 = 5;  N = nA+nB-1 = 5,对应卷积以后full数据大小。

那么初次换换的A和B为:

其次对A1和B1分别进行变换

转化B1——针对B1以及转换矩阵方法为:

将B1中的每一行向量依次按照B转化为一个方形矩阵Ba~Be,然后针对于每一个方形矩阵按照B矩阵组合成一个新的矩阵B1。B1矩阵的大小为((mA+mB-1)*(nA+nB-1),(mA+mB-1)*(nA+nB-1))。

转化A1——堆叠向量式

将上个步骤转换的A1按照行向量顺寻依次转化为一个列向量,那么列向量的大小为((mA+mB-1)*(nA+nB-1),1)大小。

针对实例:具体代码为:

    周期延拓:

 转化A——>A1

[plain] view plain copy

  1. [m1,n1] = size(A);  [m2,n2] = size(B);
  2. m=m1+m2-1;n=n1+n2-1;
  3. AA = padarray(A,[m2-1,n2-1],‘post‘);%%%补零
  4. BB = padarray(B,[m1-1,n1-1],‘post‘);%%%补零
  5. AA =AA‘;
  6. A1 = AA(:);%%%%

 转化B——>B1

[plain] view plain copy

  1. B2(1,:) = BB(1,:);
  2. for i =2:m
  3. B2(i,:) = BB(m-i+2,:);
  4. end %%%矩阵a ~ e的重新赋值
  5. B4 = zeros(n,n);%%%%%%%每一行转化的方阵
  6. B1 = zeros(m*n,m*n);%%%%%最后的矩阵
  7. for i =1:m%%%%%%%%几维向量
  8. B = B2(i,:);
  9. if sum(sum(abs(B))==0)
  10. B4 = zeros(n,n);
  11. else
  12. for j = 1:n%%%%%%%元素
  13. for k =0:n-1%%%%%%%%位置(搞定一行向量转化为方阵的形式)
  14. t = mod(j+k,n);
  15. if t==0
  16. t = n;
  17. end  %%%end if
  18. B4(t,k+1) = B(j);
  19. end %%%end for
  20. end  %%%end for
  21. for  k =0:m-1%%%%%%%%每一个转换矩阵在大矩阵中的位置编号(搞定小方阵在大阵中的位置转化为大方阵的形式)
  22. t = mod(i+k,m);
  23. if t==0
  24. t = m;
  25. end  %%%end if
  26. B1(k*n+1:(k+1)*n,(t-1)*n+1:t*n) = B4;
  27. end  %%%end for
  28. end %%%end if else
  29. end  %%%end for

结果数据转化:

[plain] view plain copy

  1. Result = B1*A1;
  2. Result = reshape(Result,n,m);
  3. Result = Result‘;

得到的结果等同于conv2的数据结果:

利用matlab接口更快的实现方法:

还是以5 * 5的原始数据与3*3的卷积核为例子:

代码如下:

[html] view plain copy

  1. dd_data = [1,2,4,5,6;6,8,9,1,3;6,8,9,2,4;7,3,5,7,5;1,5,8,9,3]; % 5 *  5
  2. f_k = [3,4,5;6,7,8;3,2,1]; % 3 * 3
  3. dd_data_f_k = conv2(dd_data,f_k,‘full‘); % matlab 函数接口
  4. dd_data1 = padarray(dd_data,[2 2],‘both‘); % 扩充原始数据
  5. v_dd_data = im2col(dd_data1,[3 3]);% 块数据向量化
  6. f_k1 = f_k(:);
  7. f_k1 = f_k1(end : -1 :1);
  8. f_k1 = f_k1‘; % 卷积核的表示
  9. dd_data_f_k1 = f_k1 * v_dd_data; % 卷积转化为相乘
  10. dd_data_f_k1 = reshape(dd_data_f_k1,[7 7]); % 转化为结果数据
时间: 2024-10-24 09:10:38

矩阵卷积Matlab(转载)的相关文章

Matlab 矩阵卷积理解(转载)

转载自:http://blog.csdn.net/andrewseu/article/details/51783181 在图像处理的过程中,经常会看到矩阵卷积的概念,比如说用一个模板去和一张图片进行卷积,因此很有必要了解矩阵卷积到了做了什么,具体又是怎么计算的. 在matlab中有conv2函数对矩阵进行卷积运算,其中有一个shape参数,取值具体有三种: -full - (default) returns the full 2-D convolution, -'same' - returns

二维矩阵卷积运算实现

http://z.download.csdn.net/detail/wangfei0117/4408649 http://download.csdn.net/detail/wanwenliang2008/1767686 二维矩阵卷积运算实现,布布扣,bubuko.com

浅谈压缩感知(十四):傅里叶矩阵与小波变换矩阵的MATLAB实现

主要内容: 傅里叶矩阵及其MATLAB实现 小波变换矩阵及其MATLAB实现  傅里叶矩阵及其MATLAB实现 傅里叶矩阵的定义:(来源: http://mathworld.wolfram.com/FourierMatrix.html) 傅里叶矩阵的MATLAB实现: dftmtx(N) is the N-by-N complex matrix of values around the unit-circle whose inner product with a column vector of

图像处理中任意核卷积(matlab中conv2函数)的快速实现。

卷积其实是图像处理中最基本的操作,我们常见的一些算法比如:均值模糊.高斯模糊.锐化.Sobel.拉普拉斯.prewitt边缘检测等等一些和领域相关的算法,都可以通过卷积算法实现.只不过由于这些算法的卷积矩阵的特殊性,一般不会直接实现它,而是通过一些优化的手段让计算量变小.但是有些情况下卷积矩阵的元素值无甚规律或者有特殊要求,无法通过常规手段优化,这个时候只能通过原始的方式实现.因此,如何快速的实现图像的任意卷积矩阵操作也有必要做适当的研究. 目前,通过友人共享或自己搜索找到的一片关于任意核算法优

浅谈压缩感知(七):常见测量矩阵的MATLAB实现

1.随机高斯测量矩阵 function [ Phi ] = GaussMtx( M,N ) %GaussMtx Summary of this function goes here % Generate Bernoulli matrix % M -- RowNumber % N -- ColumnNumber % Phi -- The Gauss matrix %% Generate Gauss matrix Phi = randn(M,N); %Phi = Phi/sqrt(M); end 2

矩阵构造方法(转载)

Fibonacci数列:F(0)=1 , F(1)=1 , F(n)=F(n-1)+F(n-2) 我们以前快速求Fibonacci数列第n项的方法是 构造常系数矩阵 (一)   Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项快速求法(不考虑高精度) 解法: 考虑1×2的矩阵[f[n-2],f[n-1]].根据Fibonacci数列的递推关系,我们可以通过乘以一个2×2的矩阵A,得到矩阵:[f[n-1],f[n]]. 即:[f[n-2],f[n-1]]*

C++实现矩阵卷积

int kernel_x; int kernel_y; int mat_x; int mat_y; int **kernel; int **mat; int pos_archor_x; int pos_archor_y; void getValue(int pos_x,int pos_y) { int temp_x_kernel_start,temp_x_kernel_end; int temp_y_kernel_start,temp_y_kernel_end; if(pos_x>=pos_ar

MATLAB命令大全和矩阵操作大全

转载自: http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在"[ ]"内: b.矩阵的同行元素之间用空格(或",")隔开: c.矩阵的行与行之间用";"(或回车符)隔开: d.矩阵的元素可以是数值.变量.表达式或函数: e.矩阵的尺寸不必预先定义. 二,矩阵的创建: 1.直接输

MATLAB卷积运算(conv、conv2、convn)解释

1 conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法.比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x. 卷积就是"两个多项式相乘取系数".(1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3所以p和q卷积的结果就是[1 3 5 3]. 记住,当确定是用