1.多层感知器简介
多层感知器(MLP)可以看做一个逻辑回归,不过它的输入要先进行一个非线性变换,这样数据就被映射到线性可分的空间了,这个空间我们称为隐藏层。通常单层隐藏层就可以作为一个感知器了,其结构如下图所示:
这里输入层首先通过权重矩阵和偏置得到总输出值并且通过tanh函数作一个非线性变换就可以得到hidden layer,然后从hidden layer到output layer可以使用之前的逻辑回归进行操作。
这里我们同样使用SGD算法来对参数进行更新,参数共有四个,分别是input-hidden权重、偏置以及hidden-output权重、偏置。
2.Python代码
2.1 程序流程
首先我们需要构建hidden layer类,其构造函数为:通过传入input layer,确定输入的维度以及hidden layer维度,然后使用均匀分布初始化input layer-hidden layer之间的权重矩阵,将hidden layer的bias初始化为0向量。并最终得到一个非线性激活函数的输出。
接下来我们定义一个MLP类,构造函数为输入层、输入层的维度、隐藏层维度、输出层维度,然后实例化一个HiddenLayer对象,然后对该对象的output进行逻辑回归(参考上一篇逻辑回归博文的代码,本文中的代码需要导入它),然后定义L1为HiddenLayer的W的和加上逻辑回归后的实例的W的和(简单说就是两个W各自求和再相加得到L1),同时定义L2为HiddenLayer的W的平方和加上逻辑回归后的实例的W的平方和(简单说就是两个W平方和相加得到L2),同时把逻辑回归的负对数似然、误差函数传给MLP,并且整合四个参数。
接下来是训练阶段,这里我们仍然对mnist手写字识别进行测试,这里定义损耗函数为负对数似然+L1+L2,然后定义两个函数test_model和validate_model的符号表达式,以及求参数的梯度及其更新的符号表达式,最后整合进train_model函数。
接下来开始执行训练,训练一共1000epoch,然后将数据分为多个minibatch,每次对minibatch_index的数据进行训练参数更新。
2.2 代码
""" This tutorial introduces the multilayer perceptron using Theano. A multilayer perceptron is a logistic regressor where instead of feeding the input to the logistic regression you insert a intermediate layer, called the hidden layer, that has a nonlinear activation function (usually tanh or sigmoid) . One can use many such hidden layers making the architecture deep. The tutorial will also tackle the problem of MNIST digit classification. .. math:: f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 5 """ __docformat__ = ‘restructedtext en‘ import os import sys import timeit import numpy import theano import theano.tensor as T from logistic_sgd import LogisticRegression, load_data # start-snippet-1 class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). NOTE : The nonlinearity used here is tanh Hidden unit activation is given by: tanh(dot(input,W) + b) :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units :type activation: theano.Op or function :param activation: Non linearity to be applied in the hidden layer """ self.input = input # end-snippet-1 # `W` is initialized with `W_values` which is uniformely sampled # from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden)) # for tanh activation function # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU # Note : optimal initialization of weights is dependent on the # activation function used (among other things). # For example, results presented in [Xavier10] suggest that you # should use 4 times larger initial weights for sigmoid # compared to tanh # We have no info for other function, so we use the same as # tanh. if W is None: W_values = numpy.asarray( rng.uniform( low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX ) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name=‘W‘, borrow=True) if b is None: b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name=‘b‘, borrow=True) self.W = W self.b = b lin_output = T.dot(input, self.W) + self.b self.output = ( lin_output if activation is None else activation(lin_output) ) # parameters of the model self.params = [self.W, self.b] # start-snippet-2 class MLP(object): """Multi-Layer Perceptron Class A multilayer perceptron is a feedforward artificial neural network model that has one layer or more of hidden units and nonlinear activations. Intermediate layers usually have as activation function tanh or the sigmoid function (defined here by a ``HiddenLayer`` class) while the top layer is a softmax layer (defined here by a ``LogisticRegression`` class). """ def __init__(self, rng, input, n_in, n_hidden, n_out): """Initialize the parameters for the multilayer perceptron :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_hidden: int :param n_hidden: number of hidden units :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # Since we are dealing with a one hidden layer MLP, this will translate # into a HiddenLayer with a tanh activation function connected to the # LogisticRegression layer; the activation function can be replaced by # sigmoid or any other nonlinear function self.hiddenLayer = HiddenLayer( rng=rng, input=input, n_in=n_in, n_out=n_hidden, activation=T.tanh ) # The logistic regression layer gets as input the hidden units # of the hidden layer self.logRegressionLayer = LogisticRegression( input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out ) # end-snippet-2 start-snippet-3 # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = ( abs(self.hiddenLayer.W).sum() + abs(self.logRegressionLayer.W).sum() ) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = ( (self.hiddenLayer.W ** 2).sum() + (self.logRegressionLayer.W ** 2).sum() ) # negative log likelihood of the MLP is given by the negative # log likelihood of the output of the model, computed in the # logistic regression layer self.negative_log_likelihood = ( self.logRegressionLayer.negative_log_likelihood ) # same holds for the function computing the number of errors self.errors = self.logRegressionLayer.errors # the parameters of the model are the parameters of the two layer it is # made out of self.params = self.hiddenLayer.params + self.logRegressionLayer.params # end-snippet-3 # keep track of model input self.input = input def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000, dataset=‘mnist.pkl.gz‘, batch_size=20, n_hidden=500): """ Demonstrate stochastic gradient descent optimization for a multilayer perceptron This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient :type L1_reg: float :param L1_reg: L1-norm‘s weight when added to the cost (see regularization) :type L2_reg: float :param L2_reg: L2-norm‘s weight when added to the cost (see regularization) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: the path of the MNIST dataset file from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz """ datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print ‘... building the model‘ # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix(‘x‘) # the data is presented as rasterized images y = T.ivector(‘y‘) # the labels are presented as 1D vector of # [int] labels rng = numpy.random.RandomState(1234) # construct the MLP class classifier = MLP( rng=rng, input=x, n_in=28 * 28, n_hidden=n_hidden, n_out=10 ) # start-snippet-4 # the cost we minimize during training is the negative log likelihood of # the model plus the regularization terms (L1 and L2); cost is expressed # here symbolically cost = ( classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr ) # end-snippet-4 # compiling a Theano function that computes the mistakes that are made # by the model on a minibatch test_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] } ) validate_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] } ) # start-snippet-5 # compute the gradient of cost with respect to theta (sotred in params) # the resulting gradients will be stored in a list gparams gparams = [T.grad(cost, param) for param in classifier.params] # specify how to update the parameters of the model as a list of # (variable, update expression) pairs # given two lists of the same length, A = [a1, a2, a3, a4] and # B = [b1, b2, b3, b4], zip generates a list C of same size, where each # element is a pair formed from the two lists : # C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)] updates = [ (param, param - learning_rate * gparam) for param, gparam in zip(classifier.params, gparams) ] # compiling a Theano function `train_model` that returns the cost, but # in the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function( inputs=[index], outputs=cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-5 ############### # TRAIN MODEL # ############### print ‘... training‘ # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) # iteration number iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print( ‘epoch %i, minibatch %i/%i, validation error %f %%‘ % ( epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100. ) ) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if ( this_validation_loss < best_validation_loss * improvement_threshold ): patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses) print((‘ epoch %i, minibatch %i/%i, test error of ‘ ‘best model %f %%‘) % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print((‘Optimization complete. Best validation score of %f %% ‘ ‘obtained at iteration %i, with test performance %f %%‘) % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, (‘The code for file ‘ + os.path.split(__file__)[1] + ‘ ran for %.2fm‘ % ((end_time - start_time) / 60.)) if __name__ == ‘__main__‘: test_mlp()