Wasserstein GAN(转载)

Wasserstein GAN(转载)的相关文章

W-GAN系 (Wasserstein GAN、 Improved WGAN)

习总结于国立台湾大学 :李宏毅老师 Wasserstein GAN  .  Improved Training of Wasserstein GANs 本文outline 一句话介绍WGAN: Using Earth Mover's Distance to evaluate two distribution    Earth Mover's Distance(EMD) = Wasserstein Distance 一. WGAN 1.  Earth Mover's Distance(EMD) E

更快更稳定:这就是Wasserstein GAN

这篇论文介绍了一种名叫 Wasserstein GAN(WGAN)的全新算法,这是一种可替代标准生成对抗网络(GAN)的训练方法.这项研究没有应用传统 GAN 所用的那种 minimax 形式,而是基于一种名为"Wasserstein 距离"的新型距离指标做了某些修改. 这是基于 MLP 生成器的 WGAN(左上图)和 GAN(右上图)生成的样本,很显然,这里 WGAN 的图像质量优于标准 GAN. 简单来说,WGAN 有两个改变.第一个是取出了判别器中的 sigmoid,这是用于计算

Generative Adversarial Nets[Wasserstein GAN]

本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是半监督学习.当我们说到学习一个概率分布,人们传统的意思是学习一个概率密度.这通常是通过定义一个参数化概率密度\((P_{\theta})_{\theta\in R^d}\)家族,然后基于收集的数据进行最大似然:如果当前有真实样本\(\{x^{(i)}\}_{i=1}^m\),那么是问题转换成: \[\unde

不要怂,就是GAN (生成式对抗网络) (五):无约束条件的 GAN

GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913.相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:"合抱之木,生于毫末:九层之台,起于累土:千里之行,始于足下",(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的

GAN综述

生成式对抗模型GAN (Generativeadversarial networks) 是Goodfellow等[1]在 2014年提出的一种生成式模型,目前已经成为人工智能学界一个热门的研究方向,著名学者Yann Lecun甚至将其称为"过去十年间机器学习领域最让人激动的点子".GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练,目的是估测数据样本的潜在分布并生成新的数据样本.在图像和视觉计算.语音和语言处理.信息安全.棋类比赛等领域,G

Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition

承接上上篇博客,在其基础上,加入了Wasserstein distance和correlation prior .其他相关工作.网络细节(maxout operator).训练方式和数据处理等基本和前文一致.以下是这两点改进的大概: Wasserstein convolutional neural network(WCNN)的低级层利用容易得到的大量VIS光谱训练,高级层划分为3部分:the NIR layer, the VIS layer and the NIR-VIS shared laye

进一步提升 GAN 的技术 Tips for Improving GAN

Wasserstein GAN (WGAN) 在一些情况下,用 JS散度来衡量两个分布的远近并不适合: 1. 数据是高维空间中的低维流形(manifold),两个分布在高维空间中的 overlap 少到可以忽略. 2. 由于 sampling 的局限性,即使两个分布之间真的存在一定的 overlap,但如果采样的数据不够多的话,可能实际上并不能体现出来. 在这种情况,GAN 训练过程中用JS散度来衡量分布之间的距离,即使已经很接近但是没有重合,还是会计算为常数 2log2,那在训练 D 的过程中

(转) The Incredible PyTorch

转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is inspired by the famous Awesome TensorFlow repository where this repository would hold tutorials, projects, libraries, videos, papers, books and anythi

(转) AI突破性论文及代码实现汇总

本文转自:https://zhuanlan.zhihu.com/p/25191377 AI突破性论文及代码实现汇总 极视角 · 2 天前 What Can AI Do For You? "The business plans of the next 10,000 startups are easy to forecast: Take X and add AI." - Kevin Kelly "A hundred years ago electricity transforme