习总结于国立台湾大学 :李宏毅老师 Wasserstein GAN . Improved Training of Wasserstein GANs 本文outline 一句话介绍WGAN: Using Earth Mover's Distance to evaluate two distribution Earth Mover's Distance(EMD) = Wasserstein Distance 一. WGAN 1. Earth Mover's Distance(EMD) E
GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913.相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:"合抱之木,生于毫末:九层之台,起于累土:千里之行,始于足下",(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的
承接上上篇博客,在其基础上,加入了Wasserstein distance和correlation prior .其他相关工作.网络细节(maxout operator).训练方式和数据处理等基本和前文一致.以下是这两点改进的大概: Wasserstein convolutional neural network(WCNN)的低级层利用容易得到的大量VIS光谱训练,高级层划分为3部分:the NIR layer, the VIS layer and the NIR-VIS shared laye
转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is inspired by the famous Awesome TensorFlow repository where this repository would hold tutorials, projects, libraries, videos, papers, books and anythi
本文转自:https://zhuanlan.zhihu.com/p/25191377 AI突破性论文及代码实现汇总 极视角 · 2 天前 What Can AI Do For You? "The business plans of the next 10,000 startups are easy to forecast: Take X and add AI." - Kevin Kelly "A hundred years ago electricity transforme